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Abstract We propose a pointer network-based QoT-aware routing and spectrum assignment scheme 

that can directly generate lightpaths with high OSNR, without pre-calculated candidates. Simulation 

results showed that the proposed scheme can significantly reduce the blocking probability while with a 

good guarantee of the lightpath QoT. 

Introduction 

Dynamic and adaptive service provisioning in 

current Elastic Optical Networks (EONs) enables 

flexible resource utilization, where efficient path 

selection and quality of transmission (QoT) 

guarantee are required.  

To provide the required level of QoT, a fast 

and accurate QoT estimation is needed. Machine 

Learning (ML)-based approaches have been 

widely studied, owing to their outstanding 

predicting capability and good computational 

speed [1]. By utilizing either lightpath-based [2-4] 

or network-wide information [5, 6], ML models 

can achieve a considerable QoT-estimation 

accuracy. However, in the lightpath-provisioning 

phase, a large number of path-frequency slot (FS) 

pairs need to be evaluated for each single service 

request, especially in EONs, and thus may lead 

to high computational complexity.  

Recently, ML and reinforcement learning-

based approaches have been employed to turn 

the resource and spectrum allocation (RSA) 

problem into a classification problem [7], which 

have significantly reduced the computational 

complexity and achieved low blocking probability. 

For instance, DeepRMSA [8] can select one of 

the K-shortest paths (KSPs) based on artificial 

features, and MaskRSA [9] extends the action 

space to the path-FS pairs. However, pre-

calculated KSPs were required for their path 

selections, which significantly reduced the 

network flexibility. Moreover, the QoT has not 

been guaranteed. Therefore, an efficient RSA 

scheme with a good QoT guarantee is required 

for EON. 

In this paper, we proposed a pointer network-

based QoT-aware RSA scheme that can 

determine the lightpath provisioning with low 

computational complexity.  Given the network 

topology parameters, the states, and the service 

requests, the pointer network-based scheme can 

directly generate lightpaths with high end-to-end 

optical signal-to-noise ratio (OSNR) after being 

trained using the actor-critic algorithm. A low 

blocking probability is attained by leveraging the 

pointer network. 

Pointer Network-based RSA 

To eliminate the limitation of candidate paths, we 

employ the pointer network to generate node-

based lightpaths. Fig. 1 illustrates the 

architecture and mechanism of the pointer 

network [10], which consists of two Long Short-

Term Memory network (LSTM) modules, one as 

the encoder (LSTM Network1) and the other 

(LSTM Network2) as the decoder. Given an input 

sequence regarding to the node-based network 

topology, states, and service requests, it points to 

a specific position in the input sequence rather 

than predicting an index value from a fixed-size 

vocabulary and finally it gives the sequence of 

indexes of the input nodes. 

The detailed procedures are introduced as 

follows. The node information is first transformed 

into a d-dimensional embedding of a two-

dimensional point 𝑥𝑖  via a linear transformation 

for all nodes before feeding into the pointer 

network. As shown in Fig. 1, the encoder network 

(LSTM Network1) sequentially reads and 

transforms the input information 𝑥𝑖  into a 

sequence of latent memory states 𝑒𝑖. Once the 

encoding finishes, a d-dimensional vector 𝑔 is fed 

into the decoder network (LSTM Network2) as a 

signal to trigger the decoding. Similarly, a 

sequence of latent memory states 𝑑𝑖  are also 

maintained in the decoder network at each step 𝑖. 

Fig. 1: A pointer network architecture and mechanism. 
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For each decoding step i, the attention 

mechanism produces a distribution 𝑢𝑖  for the 

next node to select, 

𝑢𝑗
𝑖 = 𝑣𝑇 ∙ tanh(𝑊1 ∙ 𝑒𝑗 + 𝑊2 ∙ 𝑑𝑖)    𝑗 ∈ (1,2, … 𝑁) 

where 𝑣 , 𝑊1 , and 𝑊2  are the learnable 

parameters of the pointer network.  

A dual-mask scheme is applied to ensure the 

validity of the generated path. Mask1 masks the 

unavailable nodes based on the topology matrix, 

while mask2 disenables the past nodes. Then, the 

softmax function is employed to normalize the 

probability distribution 𝑝𝑖  among the available 

nodes, which is expressed as 

𝑝𝑖 = softmax(𝑢𝑖 ∙ 𝑀𝑎𝑠𝑘1 ∙ 𝑀𝑎𝑠𝑘2) 

Based on the probability distribution 𝑝𝑖 , we can 

select the next node using the argmax function for 

sampling.  

Fig. 2 illustrates the working principle of the 

pointer network-based RSA for EON, which 

includes three parts, i.e., input feature abstraction, 

pointer network training, and QoT guaranteed 

spectrum selection. 

(1) Input Features:  

The EON topology is denoted as 𝐺(𝑉, 𝐸, 𝐹), 

where 𝑉 and 𝐸 represent the sets of nodes and 

fiber links. 𝐹 = {𝐹𝑒,𝑓|𝑒, 𝑓}  contains the state of 

each frequency slot (FS) on each fiber link. The 

total number of frequency slots is 𝑁. The service 

request 𝑅(𝑠, 𝑑, 𝑀)  arrives with the source-

destination pair (𝑠, 𝑑) and the number of demand 

frequency slots 𝑀. 

Due to the frequency contiguity constraint, we 

can only assign the consecutive 𝑀  frequency 

slots for a service request 𝑅(𝑠, 𝑑, 𝑀). In this case, 

only 𝑁 − 𝑀 + 1  choices of frequency channels 

exist to accommodate the service request 

𝑅(𝑠, 𝑑, 𝑀)  by EON 𝐺(𝑉, 𝐸, 𝐹) . The pointer 

network is employed to generate the desired 

lightpath for each available frequency channel. 

For each frequency channel, the node 

information is incorporated into a network feature 

matrix 𝑀𝑓  of a dimension of  [𝑁, 9𝑁 + 2] , 

expressed as 

𝑀𝑓 = [𝑀𝑇 , 𝑀𝑆𝐿 , 𝑀𝑆𝑁 , 𝑀𝐴𝑆𝐸 , 𝑀𝑆𝐶𝐼 , 𝑀𝑁𝐶 , 𝑀𝑠𝑑], 

where 𝑀𝑇  is the network topology matrix that 

𝑀𝑖,𝑗
𝑇 =  1  if there is a link between node 𝑖  and 

node 𝑗; 𝑀𝑆𝐿 is the span length matrix, 𝑀𝑆𝑁 is the 

span number matrix, 𝑀𝐴𝑆𝐸  is the ASE noise 

matrix, 𝑀𝑆𝐶𝐼 is the self-channel interference (SCI) 

noise matrix, 𝑀𝑁𝐶  is the neighboring channel 

states matrix, and 𝑀𝑠𝑑  is the source-destination 

indicator matrix. Each row contains one node’s 

information, and the network feature matrix is fed 

into the pointer network row by row. 

As shown in Fig. 2, given the network graph 𝐺 

and service 𝑅 , a total of (𝑁 − 𝑀 + 1)  feature 

matrixes are formulated, and they are then fed 

into the pointer networks and executed in parallel. 

(2) Training: 

Inspired by using reinforcement learning to 

train the model [11], we optimize the parameters 

of the pointer network using the actor-critic 

algorithm (PtrNet-AC). Two pointer networks are 

established, one as the actor model and the other 

as the critic model. The actor model outputs the 

desired path 𝜋, while the critic model outputs an 

unbiased estimation of the OSNR. 

The training objective of the actor model is to 

minimize the difference between the actor’s 

lightpath OSNR and the critic’s estimation OSNR; 

while the critic model is to reduce the difference 

between the estimated OSNR and the real OSNR. 

Therefore, the loss functions of the actor model 

and critic model are defined as  

𝑓loss−actor = (−𝐿(𝜋 | 𝑀𝑓)  +  𝑏(𝑀𝑓)) × 𝑝𝜋 

𝑓loss−critic =∥ 𝑏(𝑀𝑓) − 𝐿(𝜋 | 𝑀𝑓) ∥ 

where 𝐿(𝜋 | 𝑀𝑓) is the end-to-end OSNR of the 

lightpath 𝜋  generated by the actor model, and 

𝑏(𝑀𝑓)  is the OSNR estimation from the critic 

model. 𝐿(𝜋 | 𝑀𝑓)  equals 0 if the lightpath is 

unavailable. The 𝑝𝜋 is the factorized probability of 

the selected path 𝜋. 

(3) Output and Spectrum Selection:  
The network feature matrix 𝑀𝑓 is fed into the 

actor and the critic models, separately, to obtain 

the lightpaths and the corresponding OSNR 

estimation for each frequency channel. In this 

paper, we select the path with the largest 

estimated OSNR and prioritize the frequency 

channels with a smaller index. 

For a network with 𝑁 nodes, the computation 

complexity of the pointer network-based RSA 

scheme is 𝑂(𝑁2). 

Simulation Results 

Numerical simulations have been conducted with 

   
Fig. 2: Working principle of the pointer network-based RSA. 
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the 14-node and 22-link NSF network to evaluate 

the efficiency of the proposed scheme in both 

single-channel and dynamic traffic scenarios. We 

assume 40 C-band channels with a fixed channel 

spacing of 37.5 GHz, anchored to 194 THz, on 

each link. All transmitted channels have a fixed 

launch power 𝑃 of -3dBm and at the same symbol 

rate of 28 GBaud. The EGN model [5] is applied 

to construct the training and the evaluation 

environments. The embedding size and the 

hidden size of the pointer network are both set to 

be 256. The initial learning rate is set to be 1e-4, 

decaying by a factor of 0.8 for every 500 steps. 

The SP-FF and KSP-FF (K=3) schemes are 

applied as benchmarks. 

Fig. 3 shows the average end-to-end OSNR 

of a single-FS channel with 10,240 randomly 

generated requests after certain training steps 

(each with a batch size of 512 samples), 

assuming a 20% traffic load (FS utilization ratio) 

in the neighborhood channels. We can see that 

PtrNet-AC can outperform SP in the average 

end-to-end OSNR of the generated path with a 

gain of up to 0.3 dB after about 150 training steps. 

Fig. 4 shows the end-to-end OSNR gain under 

different traffic load conditions. With the traffic 

load increase, the end-to-end OSNR gain 

decreases from 0.35 dB to 0.11 dB, owing to the 

similar the crosstalk interference noise among 

different links when approaching full load. 

Figure 5 shows the blocking probability of the 

single-FS channel routing in the NSF network, 

under different traffic loads. We notice that a 

reduction of up to 14.3% in the blocking 

probability is achieved by PtrNet at 0.2-traffic load, 

compared with KSP, as the generated paths are 

not limited to the pre-calculated candidate paths. 

Such improvement in blocking probability 

reduces at traffic loads higher than 0.4. 

We have also evaluated the performance of 

the PtrNet-AC scheme in a dynamic traffic 

scenario, where requests were generated 

following a Poisson process with a fixed average 

arrival rate of 10 and an average service duration 

of the range of [11,24], corresponding to a traffic 

load (in Erlangs) of the range of [110,240]. Fig. 6 

shows the results in the case with 40 C-band 

channels in the NSF network. We can notice that 

PtrNet-AC can significantly reduce the blocking 

probability in comparison with SP-FF and KSP-

FF. No blocking occurs at a traffic load below 170.  

Conclusion 

We proposed a pointer network-based QoT-

aware routing and spectrum assignment scheme 

that can directly generate the end-to-end path 

with a high OSNR value instead of choosing from 

the pre-calculated candidates. Simulation results 

showed that the proposed scheme could achieve 

a better QoT and reduce the blocking probability 

by up to 14.3% compared with the benchmarks. 

 
Fig. 4: OSNR [dB] versus traffic load. 
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Fig. 3: OSNR [dB] versus training steps. 

 
Fig. 6: Blocking probability versus dynamic traffic load. 
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Fig. 5: Blocking probability versus traffic load. 
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