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Exact Analysis of Homodyne Crosstalk
Induced Penalty in WDM Networks

Keang-Po Ho, Chun-Kit Chan, Frank Tong, and Lian K. Chen

Abstract—We present an exact analytical probability density Il. EXACT ANALYSIS

function and a closed-form bit-error-rate (BER) formula for W th talk ch | has th | th
wavelength-division multiplexing (WDM) networks with homo- € assume the crosstalk channel has the same waveleng

dyne crosstalk from a single dominant channel. The derived With that of the desired signal, i.eEo(t) = Eoc/** for
crosstalk penalties are in excellent agreement with that obtained the signal, ande; (t) = re/«*+i#® for the crosstalk with a
from experiments. random phase af(t) distributed uniformly inf0, 2 ). Without
loss of generality, for a unit detector responsivity, the photo-
current generated igt) = |E,4r¢/#(") |2, Ignoring the term in
the order ofr?, the overall receiver noise in the photodetector
is [1]-[6]

Index Terms— Crosstalk interference, homodyne crosstalk,
wavelength-division multiplexing (WDM) networks.

I. INTRODUCTION
. o . n(t) = Acos(p(t)) + no(t)
HE BASIS of future information infrastructure will be

built upon an all-optical multiwavelength networks inwhere A = 2Eyr is the crosstalk amplitude, and(t) is the
which wavelength-division-multiplexing (WDM) signals areusual Gaussian noise in the receiver. To calculate the BER, we
transmitted in the fiber link, channel routing and add-dromust evaluate the probability density function (p.d.f.)udt).
functions are performed by wavelength routers. One fun-The p.d.f. of Acos((t)) is given byp(x) = (1/7)(A? —
damental difficulty of the router is the homodyne crosstalk?)~1/2 for —A <z < + A [3], [5], which yields the charac-
originated from inputs from neighboring fibers carrying charteristic function:
nels of the same or identical wavelength to that of the signal, 2
causing severe degradation in system performance. Because of ¥;(w) = 2—/ exp(jwAcos(yp)) dp = Jo(Aw)
the similar or identical wavelength, this crosstalk is difficult T Jo
to be eliminated by filtering, and the crosstalk will beajhere.Jy(-) is the Bessel function. The characteristic function
with the signal and generate a new kind of noise at thg n(¢) then becomes
receiver [1]-[6]. Previous analyzes on homodyne crosstalk 5 9
in wavelength routers were largely based on Gaussian ap- Un(w) = Jo(Aw) exp(—07w"/2)

proximation [1], [3], [4], [6], though there were reports and, ;. 2 andexp(—o2w?/2) are the variance and the charac-

evidences that this assumption is inadequate [3], [5]. Fr'Y%istic function of the receiver Gaussian noise, respectively.

central-limit theorem, Gaussian assumption is only valid folrhe p.d.f. ofn(t) is [8], [9, Sec. 9.3]
a large number (approximately larger than five) independent = = T T

interference sources with more or less the same variance. For 1 & (=12 /20%)* 1 A2
the case in which the number of dominant interference sourcePn (") = Sro > ] GG TE aby-
k=0

is limited to one or two, a more accurate model is required.
This scenario could arise from the nearfar effect [7], whewghere | F, (a; b; z) is the confluent hypergeometric function
one particular crosstalk channel is located closer to the roufgr Sec. A.1.2]. Assuming a detection level df the error
than the rest of the crosstalk channels and, thus, has a high@bability is then

input power. o ‘ ‘

Here, to the best of our knowledge, we are the first tg _ 1 1 Z (=1)k(d/o)**+! P <k+ 1.1._A_2>
present an exact closed-form power penalty analysis for'a 2 2r iz 2¥(2k+ 1)k! 2°7 202 )7
single-homodyne crosstalk source. A closed-form bit-error-rate )

(BER) formula is also provided. The results are in excellefi’® BER of the system can be evaluated according to the

agreement with that obtained through experiments [6].  ©fTor probability p,. -
Note that the closed-form formula for error probability

assumes a single dominant homodyne crosstalk. Closed-form
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Em’; 1] Fig. 2. Experimental setup to measure homodyne crosstalk system penalty.
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to avoid coherent effects. The polarization of the crosstalk
channel is carefully controlled to yield maximum beat noise at
0 the receiver. The measured crosstalk-induced system penalties
% 18 are in excellent agreement with that obtained from the analysis.
Crosstalk Level (dB)
Fig. 1. System penalty as a function of crosstalk ratio. V. CONCLUSION

We have derived closed-form analysis from a single ho-

noise bandwidth is the same as the laser linewidth [4], [16}0dyne crosstalk channel in WDM networks. The derived
that is on the order of tens of megahertz and is well withigfosstalk penalties are in excellent agreement with that ob-
the bandwidth of the receiver filter. tained from experiments.
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