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Abstract—We investigate the performance of maximum 
likelihood sequence estimation (MLSE) receiver in the presence 
of the impairments from both the pulse carver-data modulator 
timing misalignment (TM) and polarization mode dispersion 
(PMD) in optically amplified return-to-zero (RZ) systems. RZ 
modulation format is commonly used in long-haul wavelength-
division multiplexing transmission systems and the dominating 
noise source in those systems is amplified spontaneous emission 
(ASE) noise, which is signal dependent and requires special study 
when direct detection is employed. In this paper, based on the 
bit-to-bit error probability estimation using Karhunen-Loeve 
(KL) expansion and decorrelation of noise components, we use 
the steepest descent method to obtain sequence-to-sequence error 
probability and achieve the performance evaluation of MLSE 
receiver with arbitrary input signal pulse shape, optical filtering 
and electrical filtering taken into consideration. Monte Carlo 
simulations of a 10-Gb/s RZ system are demonstrated and agree 
with the theory well. The results show that the power penalty 
induced by TM and PMD can be effectively reduced by MLSE 
receiver, which thus validates its capability to enhance tolerance 
to both TM and PMD with shared electrical devices. 
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I.  INTRODUCTION 
Return-to-zero (RZ) modulation format is extensively 

employed in long-haul wavelength-division multiplexing 
transmission systems. Compared to non-return-to-zero (NRZ) 
modulation format, it shows several-decibel improvement in 
receiver sensitivity and promises better tolerance against 
polarization mode dispersion (PMD) [1], [2]. The generation 
of such format can be implemented by using dual Mach-
Zehnder modulator (MZM) configuration [3]. For proper 
operation of the scheme, it is essential to locate the pulse peak 
in the middle of the data bit slot. However, the relative time 
delay of the optical and electrical devices drifts over time due 
to temperature variation and device aging, leading to timing 
misalignment (TM) between the pulse carver and the data 
modulator. Such misalignment was experimentally 
demonstrated to significantly degrade the system performance 
[4]. To resolve the problem, several timing alignment 

techniques were proposed [3], [4], in which an additional 
monitoring stage was used for alignment controlling. 
Alternatively, we showed that, characterized as intersymbol 
interference (ISI), maximum likelihood sequence estimation 
(MLSE) also had the capability to combat such impairment [5]. 

PMD is one of the most important obstacles for high-
capacity long-haul optical communication systems. The 
typical manifestation of PMD is that the signal is split into two 
orthogonal polarization modes which propagate in the fiber at 
different velocities, therefore causes ISI. A lot of effort for 
PMD compensation has been performed [6], [7], among which 
electronic techniques such as feed-forward equalizer(FFE), 
decision-feedback equalizer (DFE) and MLSE have attracted 
much attention for their flexibility, adaptation, and cost-
effective. Up to now, the implementations of 40-Gb/s FFE and 
DFE, and 10-Gb/s MLSE receiver have been reported. 

As a general post-detection solution to ISI, electronic 
equalization is not specific to a certain kind of ISI and can 
simultaneously combat impairments from different optical and 
electrical distortions [8]. Hence, it reduces the number of the 
required compensation components. In this paper, we will 
investigate the performance of MLSE receiver in the presence 
of both TM and PMD in optically amplified RZ systems 
where amplified spontaneous emission (ASE) noise dominates. 
Based on bit-to-bit error probability estimation using 
Karhunen-Loeve (KL) expansion, decorrelation of noise 
components, and saddlepoint approximation, we employ the 
steepest descent method to obtain sequence-to-sequence error 
probability and achieve bit error rate (BER) evaluation of 
MLSE receiver taking arbitrary  input signal pulse shape, 
optical filtering and electrical filtering into consideration.  

This paper is organized as follows. In Section II, we 
describe the system model and the operation principle of 
MLSE. In Section III, the impairment from TM and PMD is 
investigated. Bit-to-bit error probability is obtained in Section 
IV. In Section V, the performance of MLSE receiver in the 
presence of TM and PMD is evaluated. Simulations are 
demonstrated in Section VI and agree with the theory well. 
Finally, Section VII summarizes the results. 
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II. SYSTEM MODEL AND OPERATION PRINCIPLE OF MLSE 
Fig. 1 depicts the system model. The modulated signal 

Es(t) is obtained by using dual MZM configuration where 
continuous-wave light is first carved by driving an MZM with 
a sinusoidal voltage at half of the bit rate and then modulated 
by NRZ data in the second MZM [3]. ϕ(t) and φ(t) are the 
phase changes in the pulse carver and the data modulator, 
respectively. The misaligned time tTM is emulated by an 
optical delay line. The input data VNRZ(t) is raised cosine 
shaped with α controlling the edge sharpness [5]. Fiber 
transmission link is modeled as a single-input, two-output 
setup [6]. Es(t) is split into two orthogonal polarization modes 
with γ being the relative power in the fast principle state of 
polarization. hx(γ1/2Es(t)) and hy((1-γ)1/2Es(t)) denote the 
channel mapping of the two polarization modes and include 
the sources for signal degradation, e. g. PMD. Optical noises 
from optical amplifiers, nxopt(t) and nyopt(t), are modeled as 
independent additive white Gaussian noises (AWGN) with 
zero mean and the power spectral density of N0/2 for each 
polarization’s in-phase and quadrature components [9]. An 
optical bandpass filter (OBPF) with the impulse response of 
ho(t) is then employed to suppress the optical noise and yield 
the outputs of the transmission fiber, Exout(t) and Eyout(t): 
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where ⊗ stands for the convolution operation. At the receiver, 
Exout(t) and Eyout(t) are square-law detected and summed up to 
obtain the photo-current, I0(t), of the photo-detector:  

22
0 ( ) ( ( ) ( ) )xout youtI t R E t E t= +                       (2) 

where R is responsivity of the photo-detector. Finally, I0(t) is 
filtered by an electrical filter (EF) with the impulse response 
of he(t) before it is sampled. Assume that the sampling time 
for the nth bit is tn, the sampled discrete-time sequence can be 
written as (I(t0) I(t1)… I(tn-1) I(tn)…) with: 
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where Iave(tn) is the mean value of I(tn). The sampled signal is 
analog-to-digital converted and is decoded by MLSE receiver. 
The analog-to-digital converter (ADC) would introduce 
quantization noise, which, however, is negligible for the ADC 
with more than 4-bit resolution [6]. The operation of MLSE 
receiver realizes the optimal estimation of the input data 
sequence (a0 a1…an-1 an), which requires the finding of a 
sequence (b0 b1… bn-1 bn) that minimizes the metric of: 
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where ‘≈’ is used instead of ‘=’ because the assumption that 
I(tp), 0≤p≤n, are uncorrelated may not be satisfied in optical 
systems, where EF is only a noise limiting low-pass filter 
instead of optimal whitened matched filter in order to reduce 
the complexity of MLSE receiver front end [10]. However, for 
RZ format, (4) is a near-optimal approximation because the 
bandwidth of EF is typically larger than the bit rate, leading to 

 
Figure 1. Block diagram of the system. 

 

weak correlation among the values of I(tp), 0≤p≤n. 

In practical systems, it is reasonable to assume that ISI 
affects a finite number of symbols, m. Therefore, -log(p(I(tn)| 
b0, b1,…, bn-1, bn))= -log(p(I(tn)| bn-m, bn-m+1,…, bn-1, bn)). 
MLSE receiver can be modeled as a 2m-state machine with 
state S(bn) =[bn-m bn-m+1… bn-1]. The calculation of metric (4) is 
performed by employing the Viterbi algorithm, with the initial 
metric for different states in the look-up table obtained by 
using non-parametric histogram method. 

III. IMPAIRMENTS FROM TM AND PMD 
From [5], it was shown that the impairment from TM 

could be characterized as ISI with m=1. Furthermore, for most 
practical systems, the bandwidth of the OBPF is typically 
larger than the spectral bandwidth of the optical signal. In 
such case, TM-induced ISI is linear with I(tn; an-1, an) for TM  
written as I(tn; an-1, an)= fTM(g-1an-1+g0an), where g-1+g0=1. On 
the other hand, PMD-induced ISI is also linear [6]. I(tn; an-1, 
an) for PMD in RZ systems has the form of:  
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where
1n

s
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,
n

f
af , and

n

s
af are the electric fields sampled from the 

slow mode (SM) of an-1, the fast mode (FM) of an, and the SM 
of an given an-1=an=1, respectively. In RZ systems, when the 
differential group delay (DGD) is small and the SM of an-1 
does not interfere with the FM of an, 1n

s
af −

=0; On the other 
hand, when the DGD is large and the SM of an separates from 
the FM of an, n

s
af =0. The combined impairments from both 

PMD and TM are linear ISI with I(tn; an-2, an-1, an) being: 
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Figure 2. Eye diagrams of received signals in the presence of (a) TM with 
tTM= -45 ps, (b) PMD with DGD =100 ps, and (c) TM and PMD with tTM=-45 
ps and DGD =100 ps. OBPF, α, and γ in the figures are Gaussian shaped with 

50-GHz bandwidth, 0.8, and 0.5, respectively. 
 

where f-2+f-1+f0=1. Note that for a fixed sampling point in time, 
the relative sampling phases with respect to the SM of an-1, the 
FM of an, and the SM of an are different, leading to different 
values of TM coefficients, g-1 and g0. In some special cases, for 
example DGD=T with T being the bit period, we can simplify 
TM coefficients as 

n

s
af =0, 

1 , 1n

s
ag

− − = , 1n

f
ag − =g-1 and 

1 ,0n

s
ag

−
= 

,0n

f
ag =g0 because only the SM of an-1 and the FM of an 

contribute to the sampled value and their relative sampling 
phase are the same. In such case, f-2, f-1, and f0 are derived as f-2 
=g-1r-1, f-1=g-1r0+g0r-1, and f0=g0r0. Fig. 2 shows the eye-
diagrams of the received signal for a 10Gb/s system in the 
presence of (a) TM with tTM= -45 ps, (b) PMD with DGD=100 
ps, (c) both TM and PMD with tTM= -45 ps and DGD=100 ps, 
respectively. OBPF, α, and γ are 50-GHz Gaussian filter, 0.8, 
and 0.5, respectively. In Fig. 2(b), 

n

s
af =0 due to large DGD 

value. For a fixed sampling point in time, such as the center of 
the eye, the relative sampling phases with respect to the SM of 
an-1 and the FM of an are the same, thus, 

1 , 1n

s
ag

− − = , 1n

f
ag − =g-1 

and
1 ,0n

s
ag

−
= ,0n

f
ag =g0. In addition, notice r-1=r0=0.5, therefore, 

f-2=0.5g-1, f-1=0.5, and f0=0.5g0, resulting in I(tn;1,0,1)= 
I(tn;0,1,0)=I(tn;1,1,1)/2 which can be verified by Fig. 2(c).  

IV. BIT-TO-BIT ERROR PROBABILITY 
To evaluate the performance of MLSE receiver, the 

distribution as well as the mean and the variance of I(tn; an-

m,…, an) is required. Therefore, we write KL expansion for 
nxopt(t) and nyopt(t), t∈(tn-T0 tn), where T0 is the overall impulse 
response duration of the optical and the electrical filters [11]. 
From Appendix I, we can obtain the mean and the variance of 
I(tn; an-m,…, an) as: 
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where M, λp, bx, p (tn; an-m,…, an), by, p(tn; an-m,…, an), and 
Isig(tn;an-m,…an) are defined in Appendix I. The moment 
generation function (MGF) of I(tn; an-m,…, an) is: 
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The distribution of I(tn; an-m,…, an) is the inverse Laplace 
transform of (9) [12]. Bit-to-bit error probability can be 
calculated directly from the MGF by using saddlepoint 
approximation [13], which is adopted in this paper to evaluate 
TM-induced power penalty with conventional detection: 
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where Eδ is the ensemble average with δ being the set of all 
possible [an-m… an-1]. ψ(s; an-m,…, an)=ln(M(s; an-m,…, 
an))+sα-ln|s|. s0 and s1 are the negative and positive 
saddlepoints, respectively [13]. The optimal threshold α is 
determined numerically in practical operation. 

V. BER EVALUATION OF MLSE RECEIVER 
Performance evaluation of MLSE receiver requires 

sequence-to-sequence error probability, which, however, is 
difficult to calculate due to the complexity of the distribution of 
I(tn; an-m,…, an). Some previous works employed the 
approximated closed-form expressions [8], [14]. In this paper, 
we use Gaussian approximation with the signal-dependent 
mean and variance shown in (7) and (8). Assume that in the 
sequence estimation using Viterbi algorithm, the estimated path 
(b0 b1… bn-1 bn) diverges from the correct path (a0 a1… an-1 an) 
at state k and remerges with the correct path at state k+L, i. e. 
ak≠bk and ak+L-m-1≠bk+L-m-1, but ap=bp for k-m≤p≤k-1 and k+L-
m≤p≤k+L-1. Define two vectors to evaluate error event as εc= 
[ak-m ak-m+1… ak+L-2 ak+L-1] and εe=[bk-m bk-m+1… bk+L-2 bk+L-1]. 
BER of MLSE receiver is written as:  
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              (11) 

where P(εc εe) is the probability of the error event εc εe. 
w(εc, εe) is the number of nonzero components in the vector of 
[(bk-ak) (bk+1-ak+1)… (bk+L-m-1-ak+L-m-1)]T. Pe is dominated by the 
terms involving large P(εc εe), which is used to simplify (11). 
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Figure 3. BER versus Eb/N0 for the matched filter (solid line) and the adopted 
system (dashed line). 

 

A. Sequence-to-Sequence Error Probability 
The main step to estimate Pe is to calculate P(εc εe). Given 
that I(tp; ap-m,…, ap) is Gaussian distributed with signal-
dependent mean and variance, k≤p≤k+L-1, we can obtain 
P(εc εe) by using the steepest descent method as (see 
Appendix II): 
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where η is a column vector with L components of 21/2⋅ 
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1,…, ap+k-1), 1≤p≤L. k satisfies (A12) with h being a column 
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1≤p≤L, where Imin(tp+k-1; εc, εe) is defined in Appendix II. 

B. Dominating Terms Selection  
When P(εc εe) is obtained, Pe can be estimated by the terms 
involving large P(εc εe) in (11). After thorough searching for 
large P(εc εe), we give the dominating terms as follows: (1) 
one-bit error event, i. e. εc=[ak-2 ak-1 ak ak+1 ak+2] and εe=[bk-2 
bk-1 bk bk+1 bk+2], bp∈{0 1}, k-2≤p≤k+2, ak-2=bk-2, ak-1=bk-1, 
ak≠bk, ak+1=bk+1, and ak+2=bk+2; (2) two-bit error event and 
ak≠ak+1, i. e. εc=[ak-2 ak-1 ak ak+1 ak+2 ak+3] and εe =[bk-2 bk-1 bk 
bk+1 bk+2 bk+3], bp∈{0 1}, k-2≤p≤k+3, ak-2=bk-2, ak-1=bk-1, ak≠bk, 
ak+1≠bk+1, ak+2=bk+2, ak+3=bk+3, and ak≠ak+1. (3) εc and εe with 
L>3 which satisfy i) ap≠bp, k≤p≤k+L-3; and ii) the adjacent ap, 
k≤p≤k+L-3, is different. 
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Figure 4. Eb/N0 versus tTM for the system without PMD and with different 
input data pulse shape. Diamonds, asterisks, circles, and triangle-ups stand for 
the results from simulation without MLSE receiver, from calculation without 
MLSE receiver, from simulation with MLSE receiver, and from calculation 

with MLSE receiver, respectively. 

VI. CALCULATION AND SIMULATION RESULTS  
In this section, besides the theoretical calculation, Monte 

Carlo simulations in a 10-Gb/s RZ system were performed. An 
optical RZ pulse train, consisting of 500,000 bits with 40 
samples per bit, was modulated and launched into the optical 
fiber. hx(γ1/2Es(t)) and hy((1-γ)1/2Es(t)) in Fig. 1 emulated the 
effect of PMD with variable γ and DGD. The OBPF was 
Gaussian shaped with the bandwidth of 50 GHz. The EF was a 
4th-order Butterworth filter with the optimized bandwidth in 
the absence of PMD and TM. The performance was evaluated 
in terms of Eb/N0 (dB) at the BER of 10-4, where Eb was the 
average power in one bit slot. Fig. 3 depicts the back-to-back 
(dashed line) performance of the system, which is compared to 
the performance bound (solid line) by using the matched filter. 
The figure shows that the Eb/N0 penalty of the system is 
around 0.8 dB, which can be lowered close to the bound by 
further optimizing the bandwidths of the OBPF and the EF 
[15]. The ADC resolution was 5 bit to make quantization 
noise negligible. The metric of (4) for different states in the 
look-up table was obtained using non-parametric histogram 
method by a 200,000-bit training sequence. Fig. 4 depicts 
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Figure 5. Eb/N0 for (a) α=0.8, γ=1/2 and variable DGD; (b) α=0.8, 
DGD=100 ps and variable γ, when MLSE receiver is employed. Conventional 
detection is not shown in the figure, because in those cases, the eye is highly 
distorted and conventional detection leads to the power penalty -> ∞. In the 

figure, diamonds, circles, and squares stand for the simulated results. 
Asterisks, triangle-ups and crosses stand for the calculated results. 

 

Eb/N0 versus tTM for the system without PMD and with 
different input data pulse shape when the sampling phase is at 
the center of eye. Diamonds, asterisks, circles, and triangle-
ups stand for the results from simulation without MLSE 
receiver, from calculation without MLSE receiver, from 
simulation with MLSE receiver, and from calculation with 
MLSE receiver, respectively. From Fig. 4, we can find that in 
the case of conventional detection, Eb/N0 increases rapidly 
when tTM exceeds 25 ps, with the penalty profile depending 
on the α parameter [5]. When MLSE receiver is employed, the 
power penalty is lowered significantly for |tTM|>30 ps. Thus, 
the tolerance to the impairment from TM is enhanced. The 
Eb/N0 penalty for the worst TM is limited around 6 dB. We 
have also shown the performance of MLSE receiver to 
simultaneously combat PMD and TM. Fig. 5 depicts Eb/N0 for 
(a) α=0.8, γ=1/2 and variable DGD, and (b) α=0.8, DGD=100 
ps and variable γ, when MLSE receiver is employed. 
Diamonds, circles, and squares stand for the simulated results. 
Asterisks, triangle-ups and crosses stand for the calculated 

results. From the figure, it is shown that in the worst case of 
both PMD and TM where the eye is completely closed, i. e. 
DGD=100 ps, tTM=-50 ps, the Eb/N0 penalty of MLSE receiver 
is limited to around 9 dB. 

VII. CONCLUSION 
We investigate the performance of MLSE receiver in the 

presence of both TM and PMD in optically amplified RZ 
systems. Based on the bit-to-bit error probability estimation 
techniques, including KL expansion, decorrelation of noise 
components, and saddlepoint approximation, we employ the 
steepest decent method to achieve the sequence-to-sequence 
error probability and evaluate BER of MLSE receiver with 
arbitrary input signal pulse shape, optical filtering and 
electrical filtering taken into consideration. Monte Carle 
simulations are performed and agree with the theory well. The 
results show that the power penalty for the worst TM, where 
the eye is completely closed, is limited by MLSE receiver to 6 
dB in the absence of PMD and 9 dB in the presence of the 
worst PMD. The investigation validates the effectiveness of 
MLSE receiver for combating both TM and PMD with shared 
electrical devices, which, hence, relaxes the requirement for 
the number of compensation components. 

APPENDIX I 
Because nxopt(t) and nyopt(t) are both AWGN, Fourier 

orthonormal bases are used for KL expansion. Thus, nxopt(t) 
and nyopt(t) are written as: 
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where nxopt,p and nyopt,p are independent Gaussian variables 
with zero mean and the variance of their in-phase and 
quadrature components being N0/(2T0). After the OBPF, nx(t) 
and ny(t) are:  
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where H0(f) is the transfer function of the OBPF with the 
bandwidth evaluated by the parameter M [11]. From (1), (2), 
(3) and (A2), I(tn; an-m,…, an) has the matrix notation as: 
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where * stands for the conjugate. nxopt (or nyopt) is a column 
vector whose 2M+1 components are nxopt,p-M-1 (or nyopt,p-M-1), 
1≤p≤2M+1. vx(tn; an-m,…, an) and vy(tn; an-m,…, an) are column 
vectors whose 2M+1 components are  
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respectively, where 1≤p≤2M+1. Q is a (2M+1)× (2M+1) 
matrix whose pth-row, qth-column element is: 
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where 1≤p,q≤2M+1. Notice that Q is Hermitian symmetric, 
the eigenvalues λp, 1≤p≤2M+1, are real and the eigenvectors 
are orthogonal, i. e. Q=UΛU T* with Λ=diag{λp} and U being 
an orthogonal matrix. Therefore, (A3) can be written as: 
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where zxopt (or zyopt) is UTnxopt (or UTnyopt). bx (tn; an-m,…, an) 
(or by(tn; an-m,…, an)) is UTvx(tn; an-m,…, an) (or UTvy(tn; an-

m,…, an)). Isig(tn;an-m,…an) represents the received 
deterministic signal component in the absence of noise. As U 
is an orthogonal matrix, the components of zxopt (or zyopt) are 
Gaussian variables with zero mean and the variance of their 
in-phase and quadrature components being N0/(2T0). Let 
bx,p(tn; an-m,…, an) (or by,p(tn; an-m,…, an)) be the pth component 
of bx(tn; an-m,…, an) (or by(tn; an-m,…, an)), 1≤ p ≤2M+1, the 
mean, the variance, and the moment generation function of 
I(tn; an-m,…, an) are derived from (A6) as (7), (8) and (9), 
respectively. 

APPENDIX II 
MLSE receiver chooses the error path if: 
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Let I=[I(tk)…I(tk+L-1)] and                                                      
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which are the functions with L-dimension variables. Define 
B(I;εc, εe) be the locus of all points in L-dimension space such 
that F(I; εc)= F(I; εe). Let Imin(εc, εe) =[Imin(tk; εc, εe)… 
Imin(tk+L-1; εc, εe)] be the vector in B(I; εc, εe) that minimizes 
F(I; εc), P(εc εe) can be expressed as [8]: 

*

min

1
1/ 2

( ) exp( ( ( , ); ))
4

                      ( ) ( )
2

T

c e e c c

T k L

p k p

P F

Q
u
π+ −

=

→ = −

⋅ ∏

η ηε ε ε ε ε
η

I

k       (A9) 
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η is a column vector with L components of 
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and k is 

min ( , )*
, ( ( ; ) ( ; ))
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where u=[uk
-1/2 uk+1

-1/2… uk+L-1
-1/2]. Given the Gaussian 

distribution with signal-dependent mean and variance of I(tn; 
an-m,…, an), (12) is obtained from (A9). 
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