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Abstract:  We have demonstrated a polarization-interleaved wavelength-
division multiplexed system with a two-orthogonal-pump optical parametric 
amplifier. The sensitivity has been improved by about 2dB compared to its 
counterpart with all channels co-polarized, with the same signal gain, which 
itself dramatically improved over the conventional two-parallel-pump OPA. 
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1. Introduction 

Fiber optical parametric amplifiers (OPAs) have recently been demonstrated to be practical 
amplifiers with high gain [1], large bandwidth [2] and polarization independence [3,4,5]. The 
quality of signals emerging from OPAs used as signal processors has been investigated by 
several groups recently, especially with regard to the pump-to-signal RIN transfer [6], cross-
phase modulation (XPM) amongst wavelength-division multiplexed (WDM) channels [7], etc. 
However, four-wave mixing (FWM) and cross-gain modulation (XGM) seem to be the 
fundamental limits for using OPA as WDM amplifier. Previous work has shown that this kind 
of degradation is already severe with only three WDM channels in a one-pump OPA (1P-
OPA) system [8]. It was also shown that unequal channel spacing slightly improves the FWM 
degradation [9]. However, the XGM effect still provides a basic detrimental effect when using 
OPA in WDM systems, mediated through the depletion of the pump(s). Compared to a 1P-
OPA, a two-pump OPA (2P-OPA) provides an extra degree of freedom; it can achieve a 
flattened gain spectrum with a large gain bandwidth [10,11,12]. Previous efforts included the 
investigation of the relationship between the spurious FWM and signal power and length of 
nonlinear medium for a 2P-OPA [13]. It has also been shown that with low gain and output 
power, the crosstalk level and power penalty are acceptable [14,15,16], though the conditions 
may not be necessarily fulfilled for practical applications, especially when using a fiber OPA 
as a power booster amplifier. Previously, Jopson et al. have exploited 2OP-OPA to achieve 
mid-span spectral inversion (MSSI) in a 320-km transmission link [17,18], and we have 
explored the possibility of using two-orthogonal-pump OPA (2OP-OPA) to suppress WDM 
crosstalk and showed promising preliminary results [19].  

In this paper, we further demonstrate that with the aid of polarization interleaving (POIN) 
[20], the WDM signal degradation can be improved significantly. That is because FWM is 
strongly dependent on the states of polarization (SOPs) of neighboring channels and is 
essentially suppressed if two channels are orthogonal to each other [21]. We will focus on the 
large-signal behavior in 2P-OPA, particularly 2OP-OPA. 

2. Theory 

The signal quality degradation of WDM channels due to XGM and FWM in a 2P-OPA system 
is illustrated in Fig. 1. Only channel #1 (λ1) is shown with intensity-modulation (IM) for 
clarity. Also note that the corresponding idlers for all four channels (λ1 – λ4) have not been 
shown here for simplicity. The signal (λ1) is amplified by the parametric gain (with pump 
wavelengths at λp1 and λp2). As it grows, it draws power away from the pump(s), because the 
total optical power remains constant. As a result, the pump power itself now has IM and all 
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channels #2 – #4 will exhibit slightly different gains at different times, depending on whether 
they travel with a depleted part of the pump, or an undepleted one. As a result, the amplified 
channels #2 – #4 will themselves exhibit IM, which constitutes crosstalk. If we now consider 
that channels #2 – #4 are replaced by independent modulation signals, it is clear that their 
amplitudes will experience fluctuations due to XGM crosstalk induced by the first channel 
and vice versa, which will lead to deterioration of their qualities. Furthermore, the spurious 
FWM also lead to extra signal quality degradation [11]. 
 

λp2 λλ3 λ4λ1 λ2

FWM crosstalk

XGM crosstalk

λp1 λp2 λλ3 λ4λ1 λ2

FWM crosstalk

XGM crosstalk

λp1

 
Fig. 1.  Illustration of the signal quality degradation of WDM system due to XGM and FWM 
effects in a 2P-OPA configuration. Refer to the text for details. 

 
Previously, we have demonstrated with co-polarized (COPO) WDM channels in a 2OP-

OPA [as shown in Fig. 2(a)], that the WDM signal degradation improved by at least 1.7 dB in 
the Q-factor measurement, and by more than 2 dB in the power penalty, compared to the 2PP-
OPA counterpart. Now, we propose that by using POIN WDM channels [as shown in Fig. 2 
(b)], the signal quality can further be improved. 
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Fig. 2. 2OP-OPA system with WDM channels that are: (a) Co-polarized (COPO); (b) 
Polarization-interleaved (POIN). 
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3. Experiments 
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Fig. 3.  2OP-OPA with POIN configuration. TLS: Tunable laser source. PC: Polarization 
controller. PM: Phase modulator. VOA: variable optical attenuator. MZ-IM: Mach-Zehner 
intensity modulator. ISO: Isolator. 

We performed experiments to verify the predictions of the preceding section. The 
experimental configuration is shown in Fig. 3. The parametric gain medium consists of 2 km 
of HNL-DSF (OFS Ltd.) with a nominal zero-dispersion wavelength λ0 of 1543.4 nm, and a 
dispersion slope of 0.019 ps/nm2km. The fiber nonlinear coefficient γ is 10.4 W-1km-1. Two 
tunable laser sources, TLS1 and TLS2, set at 1529.45 nm and 1556.8 nm, respectively, serve 
as the pump sources. The pump wavelengths, with average wavelength approximately equal 
to λ0, are selected to flatten the ASE gain spectrum. The CW pumps are phase-modulated 
(PM) by a 3 Gb/s 27-1 pseudo-random bit sequence (PRBS) to suppress stimulated Brillouin 
scattering (SBS). The polarization controllers, PC1 and PC2, align the pump SOP’s with PM, 
which helps to reduce the insertion loss. The two pumps are then separated by a WDM 
coupler (WDMC), amplified by two C-band EDFA’s (EDFA1 & 2), and followed by tunable 
bandpass filters (TBF) with 0.84 nm (TBF1) and 1.96 nm (TBF2) bandwidth, respectively. 
Pumps #1 and #2 are then amplified by two separate EDFAs, with maximum output power of 
21 dBm each, and they are combined with odd (#1, #3) and even (#2, #4) channels by 95/5 
couplers, respectively. The two branches are then combined with a polarization beam-splitter 
(PBS). Furthermore, polarization controllers (PC3 and PC4) are used to ensure that the two 
pumps incident on the HNL-DSF are orthogonal. Similarly, PC7 and PC10 are used to 
maintain orthogonal SOPs between odd and even channels. We used 4 WDM channels 
(DFB1-4, with odd and even channels orthogonal to each other) with spacing of 100 GHz, as 
signals to determine the signal quality degradation. Each signal is intensity-modulated by a 10 
Gb/s PRBS. The signal wavelengths of the WDM channels used are: λ1 = 1551.1 nm, λ2 = 
1551.9 nm, λ3 = 1552.7 nm, and λ4 = 1553.5 nm, respectively. They are decorrelated by 2 km 
of dispersion-compensating fiber (DCF). The input signal power of each channel is –6 dBm, 
and the signal gain of each WDM channel is about 13 dB, so that the signal output power of 
each channel is about 7 dBm. The output spectrum of HNL-DSF, followed by an isolator 
which prevents any reflection from the variable optical attenuator (VOA), is observed at the 
OSA. We define the FWM crosstalk term as the newly generated power right next to channel 
#1 (i.e. 1551.9 nm). After measuring the optical crosstalk, we also measure the eye diagrams 
and bit-error-rate (BER) using the digital communication analyzer (DCA) and BER tester. In 
order to quantify the improvement due to POIN, we also measure the eye diagrams and BER 
of the 2OP-OPA without POIN, with a setup similar to that used in Ref. [19]: essentially the 
PBS is removed and all WDM channels are co-polarized (COPO). 
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4. Results and discussion 
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Fig. 4.  Optical spectra for 2OP-OPA with three POIN WDM channels.  
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Fig. 5.  Eye diagrams (with Q factors) for 2OP-OPA with COPO signals at different λs (nm): 
(a) 1551.1; (b) 1551.9; (c) 1552.7; (d) 1553.5. The corresponding eye diagrams with POIN 

signals (e) – (h). 

The results are shown in Fig. 4, Fig. 5, and Fig. 6. Firstly, Fig. 4 shows the output optical 
spectrum with channels #1, #3 and #4 turned ON, while channel #2 was OFF. Since the noise 
floor at channel #2 (1551.9 nm) is about –20dB below channel #1 (1551.1 nm), the FWM 
crosstalk is at least –20dB, which is marginally better than that measured in a 2OP-OPA with 
COPO signals (i.e. –19.4dB) [19]. It cannot provide conclusive evidence of the improvement 
of 2OP-OPA with POIN over COPO signals.  

Therefore, we measured the eye diagrams and Q-factors for all four channels (including 
channel #2, which was OFF in Fig. 4) and the results are shown in Fig. 5(a) – (h). The eye 
diagrams for 2OP-OPA with POIN signals have wider eye openings than those with COPO 
signals, as shown in Fig. 5(a) – (h). Also the Q factor is improved by at least 3dB. Note that 
the increase of the crosspoint is due to the OPA gain saturation. We take advantage of it to 
suppress the noise in the mark level. 
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Fig. 6  BER curves for all four channels with POIN and COPO signals. 

In order to quantify the power penalty due to the OPA, we also measured the BER of the 
amplified signal for 2OP-OPA with POIN and COPO signals. The results are shown in Fig. 6. 
Note that there is about a 2dB improvement in sensitivity of POIN over COPO signals, which 
is consistent with what we inferred from Fig. 5. The power penalty over the back-to-back 
curve is due to the imperfect SBS suppression and the ASE noise inherited from the high 
power EDFA. 

We have performed simulations with a commercially available package [22] to quantify 
these considerations. Sections II-IV in Ref. [22] describe in detail the equations used for 
modeling propagation in transmission fibers. The model includes dispersion, nonlinearity, and 
random birefringence, which are also required for studying propagation in fiber OPAs. In 
previous work, we have found that this package provides numerical results for OPAs that are 
generally in good agreement with experimental results. 

The common parameters used here were the same as in our experiments, namely: Fiber: 
HNL-DSF; L = 2 km; γ = 10.4 W–1 km–1; λ0 = 1543.4 nm; dispersion slope of 0.019 
ps/nm2km. When four WDM channels were present at the same set of wavelengths as in our 
experiments, the simulation results showed a FWM crosstalk reduction by at least 7dB as the 
channel separation was increased from 100GHz to 400GHz. This helps to justify limiting our 
experiments to only four WDM wavelengths, 100GHz apart. 

We also extended the system to 32 WDM channels, and similar simulation results were 
obtained. POIN performed better than COPO by at least 1.5 dB in term of Q-factor for most of 
the WDM channels, especially those channels with poorer Q-factors. 

The rationale for the experiments is based on the FWM reduction due to POIN signals. 
However, there is no similar expectation for XGM. In fact, since in a polarization-independent 
OPA the gain is the same regardless of SOP, so should be the pump depletion, and the XGM. 
Therefore, we conclude that the improvement is due to the suppressed spurious FWM in the 
POIN over COPO configurations. 

5. Conclusion 

We have demonstrated, for the first time to our knowledge, a polarization-interleaved WDM 
system with a two-orthogonal-pump OPA. The sensitivity has been improved by about 2dB 
compared to its counterpart with all co-polarized WDM channels with the same signal gain. 
These results should help design high-performance OPAs for use in WDM communication 
systems. 
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