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槪 要 

本篇論文分爲兩部分。在第一部分中，我們建議了一個在時分復用光網絡傳輸 

節點中調節信道的新方案。這個方案利用了混合鎖模半導體激光器作爲光脈衝 

源。信道的調節是通過調節驅動鎖模激光器的電信號的相位。電信號相位的調 

節可以通過一條由電開關控制的可調延遲線。這個方案已在實驗中證明了可行 

性。論文中報告了實驗的設置和實驗結果。我們還在實驗中測量了鎖模激光器 

調入新信道所需的時間。 

論文的第二部分旨在通過數字模擬，對被動和混合鎖模激光器的性質和動態行 

爲作更好的了解。我們用了大信號時域模擬法對鎖模激光器進行模擬。這種模 

擬法是基於解電磁場在激光器中的偶合方程式。在模擬中，我們特別注意了一 

些對被動和混合鎖模激光器的操作範圍及光脈衝寬度的因素。另外，我們也對 

電驅動信號的相位改變時，鎖模激光器的動態行爲做了詳細的模擬。最後，模 

擬的範圍還包括了次諧鎖模過程中產生的幅度調制現象。 



Abstract 

This thesis is divided into two parts. In the first part of the thesis, we propose a 

new channel tuning scheme for a channel tunable transmitter in a Optical TDMA 

network node. This scheme make use of hybrid mode-locked laser diode as the 

pulse source. Channel tuning is achieved by shifting the phase of the RF driving 

signal. This is accomplished through variable electrical delay line controlled 

by RF switches. The proposed scheme is demonstrated experimentally. To 

determine the channel tuning time, the channel tuning transient of the mode-

locked laser is also investigated. 

The second part of the thesis aims at providing a better understanding, 

through numerical simulation, on the characteristics and dynamic behavior of 

the class of mode-locked diode lasers used in the first part. Large-signal time 

domain modeling method is used to carry out the simulation. This method is 

based on solving time dependent coupled wave equations using central-difference 

method, which allows a more accurate solution to be found. Using this model, 

passive and hybrid mode-locking can be simulated. In particular, we pay atten-

tion to factors that affect the mode locking regimes and the pulse width of the 

laser. The dynamic behavior of the hybrid mode-locked laser during the phase 
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change of the RF driving signal is also studied. Finally, the amplitude modu-

lation phenomenon of subharmonic mode-locked laser is simulated and studied 

using this model. 
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Chapter 1 

Introduction 

1.1 All Optical Multi-Access Network 

Optical fibers are known to possess a huge capacity (> 30THz bandwidth). A 

large portion of these available capacities are, however, not utilized mainly due 

to the limited processing speed of the optoelectronic devices connected to the 

fiber. Therefore it is desirable to allow several communication nodes to share 

the same optical medium. To further increase the performance of the network, 

all-optical processing techniques can be employed at the network nodes so that 

0 / E and E / 0 conversion can be avoided. As a result, all-optical multi-access 

network was evolved [1 . 

Contrast to optical long-haul transmission networks which simply transmit 

data from the source to the destination, multi-access networks further allow re-

source sharing among all network nodes and support channel add-drop. The 

key network functions in general include routing, multiplexing, demultiplexing 

and switching. In order to facilitate the multi-access, the transceiver at each 

1 



Chapter 1 Introduction 

node should be channel-tunable and an efficient media access control (MAC) 

protocol is required to maximize the network throughput. Typical network ele-

ments include optical cross-connect (OXC), wavelength grating Router (WGR), 

tunable filters, tunable transmitters and receivers, channel multi/demultiplexers 

and optical add-drop multiplexers (OADM). 

In the following section, three common kinds of optical multi-access networks, 

namely, wavelength division multi-access, time division multi-access (TDMA), 

and subcarrier multi-access (SCMA) will be briefly described. 

1.2 Multi-access Techniques 

1.2,1 Wavelength-Division Multi-access (WDMA) 

In wavelength division multi-access networks (WDMA), each channel is repre-

sented by a specific wavelength. Wavelength division multiplexing (WDM) is 

used to combine all channels on the backbone. There are two types of WDMA 

networks, namely single-hop WDMA networks and mutli-hop WDMA networks. 

In single-hop WDMA, the data stream does not have any optoelectronic con-

version or wavelength conversion before it reaches its destination. They require 

wavelength-tunable devices such as wavelength-tunable filters and lasers, to set 

up the network connections. In multi-hop WDMA networks, there are some 

intermediate nodes to relay the data stream from the source to the destination 

and thus they do not require tunable transceivers. However, optoelectronic and 

electro-optic conversions may be needed at the intermediate nodes. In general 

both of single-hop and multi-hop WDMA networks are susceptible to the in-

terchannel crosstalks, nonlinear effects, dispersion and optical amplifiers' ASE 
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Chapter 1 Introduction 

noise. 

1.2.2 Subcarrier Multi-Access (SOMA) 

In subcarrier multi-access networks (SCMA), single wavelength is used and each 

channel is represented by a specific RF subcarrier. Subcarrier multiplexing 

(SCM) is used to combine all channels on the backbone. The RF technology 

is quite mature and the RF components are economical and have good stabil-

ity. However, the signal processing can only be done in electronic domain and 

the capacity is limited by various kinds of noises such as thermal noise, shot 

noise, relative intensity noise, intermodulation products, clipping and optical 

beat interference. 

1.2.3 Time-Division Multi-Access (TDM A) 

In time division multi-access networks (TDMA) network, Optical Time Division 

Multiplexing technique is used to achieve channel multiplexing. There are two 

kinds of TDMA networks, namely bit-interleaved TDMA and packet-interleaved 

TDMA networks. In bit interleaved TDMA network, each channel occupies one 

time-slot (bit) in a TDM frame. They have a very stringent synchronization re-

quirement and the time-slot (channel) tuning time should be of sub-nenosecond 

range when operate at high-speed (Gb/s). For packed-interleaved TDMA net-

works, the data packets from different nodes are transmitted in burst-mode and 

arrived asynchronously at the receivers. Therefore, some schemes should be used 

to avoid packet collision. Moreover, guard time should be added between adja-

cent packets and phase-locked loop are needed to extract the clock or phases in 
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Chapter 1 Introduction 

each packet. Besides, there exists power variation from burst to burst due to dif-

ferent path attenuation between each node. Therefore, the receiver should have 

a large power dynamic range and the detection threshold should be adaptively 

changed to recover the data bits. Despite the stringent hardware requirements, 

TDMA network offers certain advantage over WDMA, such as higher aggre-

gate bit rate on a single wavelength and simplified network management. More 

detail concerning TDMA, such as the network architecture and the required 

technologies to implemented optical TDMA networks will be discussed in next 

chapter. 

1.3 Numerical Modelling of Semiconductor Mode-

locked laser 

One of the key compoments for Optical Multi-Access network is optical short 

pulse source. Gain-switching, Q-switching and mode-locking are all possible 

methods to generate short pulses. The gain and Q switched lasers can generate 

optical pulses with pulse width of a few pico seconds and repetition rate in GHz 

range [2，3]. With these techniques, the pulse width and frequency are restricted 

by gain dynamics and resonance frequency in the laser. The pulse repetition 

rate is limited to below 20GHz. Mode locking avoids these limitations and 

give repetition rates beyond lOOGHz with nearly transform limited spectrums 

and low jitter. In recent years, passive and hybrid mode-locking have all been 

implemented using diode laser. 

To better understand passive and hybrid diode lasers, a numerical model is 

needed to simulate their dynamic behavior. Classic mode-locked laser theory [4 
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was applied to diode lasers by considering photon-electron coupling within the 

laser cavity. The locking of only 3 modes were considered. This provides little 

theoretical verification to experimental results in which several modes are usually 

locked. In recent years, large-signal time domain modelling method using time 

dependent coupled wave equations have been proposed to simulate laser devices 

5]. With this method, an useful mode locking model can be constructed. 

1.4 Objective of this Thesis 

The objective of this thesis is two-fold. The first part of the thesis aims at inves-

tigating the feasibility of using semiconductor mode-locked lasers as a channel 

tuning device in an optical TDMA network node. An overview of all-optical 

TDM A networks, the network architectures and key enabling technologies are 

first given in Chapter 2. Chapter 3 discusses the use of Mode-locked laser diode 

to construct a channel-tunable transmitter for Optical TDMA networks. The 

proposed scheme is demonstrated experimentally . The channel tuning transient 

is also investigated. 

The second part of the thesis aims at providing a better understanding on 

the characteristics and dynamic behavior of the class of mode-locked diode lasers 

used in part 1. Chapter 4 describes a large-signal time domain modeling method 

to carry out numerical simulation on mode-locked laser diodes. A new set of 

equations are derive to solve the time-dependent coupling wave rate equation 

using central-difference method. Both passive and hybrid mode locking can be 

simulated using this model. 

Finally, chapter 5 summarize this dissertation and suggests some directions 
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of research on both of the above topics. 
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Chapter 2 

Optical TDMA networks 

2.1 Introduction 

High speed optical multi-access networks are being developed because of the 

ever-increasing demand for bandwidth in local, metropolitan and wide area net-

works. In recent years, WDM networks and systems with per channel data rate 

of 10 Gb/s are being deployed. By increasing the wavelength used within the 

network, the aggregate data rate can be increased considerably. As the channel 

density increases, however, the complexity of the WDM network also increases 

making the management of the network difficult. This has motivated the re-

searchers to investigate another approach to increase the aggregate bit rate of 

the network, TDM. In TDMA networks, multiple time-domain channels can be 

interleaved to form a single data stream with channel rates exceeding 100 Gb/s 

6]. The potential advantage of TDMA networks stem from the use of a single 

fast channel. Such a channel is simpler to manage and control. Variable quality 

of service (QoS) level can also be easily implemented [7] on this kind of channels. 
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Chapter 2 Optical TDMA networks 

2.2 OTDM 

In OTDM network, optical signals representing data streams from multiple 

sources are interleaved in time to produce a single data stream. The inter-

leaving can be done on a bit-by-bit basis as illustrated in Figure 2.1(a) or in the 

case where data are sent in packets, it can also be done on a packet-by-packet 

basis as shown in Figure 2.1(b). In both cases, guard time is needed to separate 

different frames. Another method to identify the boundary is to use framing 

pulses [8 . 

1 I 0 0 
‘ ‘ ‘ ‘ ‘ 03 

I ^ ：丨：丨：丨：丨：赢::::::::::v:xX;;|t:v>:|>； 苏 

_ 9 _ I - f ] 纏 1 i 
(a) 

H+i 
Q. 

(b) 

Figure 2.1: Bit interleaved TDM and packet interleaved TDM 
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2.3 Network Architecture 

2.3.1 Broadcast Networks 

Similar to WDM networks, an OTDM network can be either a broadcast network 

or a switch-based network. The topology of a broadcast network can either be a 

star or a bus/ring. In broadcast networks, there is no routing or switching within 

the network. All the network nodes are connected to a shared medium such as 

a passive star coupler or a single fiber bus or ring. Figure 2.2 illustrate some of 

the network topologies for broadcast network. To perform media access, each 

network node should be able to access one or more channels to send or receive 

data. This can be achieved through tuning transmitter or receiver to different 

time slots. Three types of node configurations are possible: 

• fixed-tuned transmitter and tunable receiver (FTTR); 

• tunable transmitter and fixed-tuned receiver (TTFR); 

• tunable transmitter and tunable receiver (TTTR). 

The last configuration provides the best flexibility but it requires costly tunable 

devices in both transmitter and receiver. 

A multi-channel media-access protocol, such as ACTA [9], is required for this 

type of network so that network nodes can decide how to tune their transmitters 

and receivers. 
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Figure 2.2: Network topologies for broadcast networks 

2.3.2 Switch-based networks 

Switch-hiuscd network, on the other hand, can hiivo arl)itrary mesh topology. 

Similar to the IP or ATM ner works of tori aw switching and routing functionali-

tH\s arc iiirorpuratO(i iiiio the network nodes. Thosfunctions usually (—�impfi 

out ill optical (iomain in order to provide {);ick»n sv/iichini^ sr'n.ic” ar n data rate 

that would be iiifo.'Lsible with eiertronic packpt-switched networks. 

A gon«Tir ”xamplt�of a packoi switched network is shown m Figure 2.3. 
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routing no.lt\s hd'on�reachlOi^ fh»'ir nations. Therd'orp it is essonrial rhar 
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m W m 
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• 

Figure 2.3: A generic packet switching network 

the packets carry addressing information in their headers. A network node, upon 

receiving the packet, can then exam the packet header and decide the optimal 

route for the packet. A packet switching network node is shown in Figure 2.4. 

It carries out a number of tasks including (1) re-synchronization of incoming 

packets, (2) packet buffering, (3)packet header recognization and processing, 

(4) routing, flowing control and contention resolution. 

Input Buffer Switching Matrix Output Buffer 

~ H e a d e r | _ ^ , _ _ Z Ipp! 
O i i ~ ] recognition ^ ^ 

二 ~ l l i _ | L \ / — 
( 7 ^ Liitil recognition ^ 

ElTl Header _ / \ p f l l 
recognition 一 / \ ^ i i l 

^ ~ r ^ … f — — — — 
Synchronization I • 老 ^ 

C q _ | I I Switching Control 

Figure 2.4: A routing node for packet switching network 
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Chapter 2 Optical TDMA networks 

There are tradeoffs between broadcast and switch based networks. The 

broadcast networks suffer from large splitting losses and are not scalable. There-

fore, they are mainly suitable for LAN applications. The switch based networks 

are more scalable and suited for WAN applications. However, they are also sig-

nificantly more complex since the network nodes have to preform many tasks 

optically. A working prototype of a full featured network node such as the one 

shown in Figure 2.4 has yet to be developed mainly due to the lack of practi-

cal optical components like ultrafast optical signal processor and random access 

memory. As a result, the choice of protocols (eg., deflection routing) and net-

work topologies (eg., Manhattan street network [10] and shuffle network [11] as 

shown in Figure 2.5) for packet switching are limited. 

( a ) ( b ) 

Figure 2.5: (a) Manhattan street network (b) shuffle network 
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2.4 Key technologies for optical TDMA Net-

work 

In this section，several key technologies for optical TDMA networks are briefly 

described. 

2.4.1 High Repetition Rate Short Pulse sources 

To increase channel capacity in OTDM networks, data bits are usually coded on 

return-to-zero (RZ) pulse trains. Thus laser sources that produce stable pulse 

trains with ultra-short pulses are critical to the successful operation of these 

optical networks. Furthermore, the generated pulses also need to be transform-

limited to minimize pulse broadening due to dispersion and inter-symbol inter-

ference. Several options are available nowadays. 

Ac t i ve Mode- locked Fiber r ing Laser 

DF已 Laser 

50:50 DCF 
PC Coupler _ 1 _ 

A H 
SOA Filter 

广 DCF 

^ 0 •！ 

Figure 2.6: mode-locked fiber ring laser 

Figure '2.6 shows the schematic of a mode-locked ribr-r ring laser with activf-
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mode-locking. When the modulation frequency of the synthesizer matches the 

harmonics of the fundamental frequency of the cavity, optical pulses can be 

generated. 30-GHz optical pulse generation using this technique was reported 

in [12；. 

Semiconductor mode- locked laser 

Semiconductor mode-locked laser consists of [13] a gain section(s) and a sat-

urable absorber(SA) section. They can be arranged in an (Colliding Pulse 

Mode-locking) CPM or (Self-Colliding Pulse Mode-locking) SCPM configura-

tion. The repetition rate of these mode-locked lasers is closely related to the 

cavity length of the waveguide. If the length of the laser is L, the repetition rate 

of the pulses is Vg/2L, where Vg is the group velocity of the waveguide. These 

pulses can be synchronized to an external reference by either applying an RF 

signal to the SA section on top of the reverse bias voltage injecting an external 

optical pulse train. Transform limited pulses with pulse width less than Ips can 

be generated using this method. 

Gain Swi tched Lasers 

Gain switching [14] of laser diode is a simple way to generate short optical 

pulses. An RF signal can be applied directly to the gain section of a laser to 

produce optical pulses. A normal dispersion fiber can be used to achieve chirp 

compensation and the generated optical pulses can be further compressed to 5-7 

ps pulse width with a repetition rate up to 20GHz. 
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Chapter 2 Optical TDMA networks 

2.4.2 Multiplexer and de-multiplexers 

High speed channel multiplexing and demultiplexing are quite challenging in 

high-speed time division multiplexing. Here are some of the options. 

Channel Mu l t i p l exe rs 

Low speed data stream have to be tuned to different time slots before combining 

them to form a higher speed data stream. Optical tunable delay lines are used 

to achieve this purpose. To reduce the insertion loss, external modulators can 

be integrated with In-P based waveguide arrays having different time delays to 

form a fast tunable delay line [15 . 

Channel Demul t ip lexers 

• Nonlinear Optical loop mirrors (NOLM) 

u j j / a _ i i u _ _ _ _ _ / a _ _ —• —• — • —• 
(a) (b) 

Figure 2.7: (a) NOLM (b) TOAD 

Figure 2.7(a) shows a NOLM. It utilizes the interference between two 

counter-propagating signal streams with induced nonlinear phase shifts 
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within a fiber loop. A control pulse stream is injected into the loop to 

switch out the selected channel. 100 Gb/s to 6.3 Gb/s demultiplexing 

using NOLM was reported [16 . 

• Terahertz Optical Asymmetric Demultiplexer (TOAD) 

The structure of TOAD [17] is similar to the NOLM, as shown in Figure 

2.7(b) the basic difference is that the nonlinearities are introduced into 

the ring by a nonlinear element which may be a semiconductor device, for 

example, SOA. The most advantageous characteristics of this structure 

are its smaller required switching pulse power and the shorter ring length 

compared to NOLM. 

• Ultrafast Nonlinear Interferometer (UNI) 

The configuration of UNI was originally intended as a configuration for 

low repetition rate pump-probe experiment. It is shown in [18] that high 

speed switching (100 Gb/s) can also be achieved using this device. Figure 

2.8 shows the configuration of a UNI. 40 Gb/s to 10 Gb/s demultiplexing 

using UNI was demonstrated. 

• Four-Wave Mixing (FMW) 

When a data signal and a strong pump signal, which are of different wave-

lengths, are injected simultaneously into a fiber or a semiconductor laser 

amplifier, a new wavelength, which contains the demultiplexed signal, can 

be generated by the nonlinear four-wave mixing effect. 400 Gb/s to 6.3 

Gb/s demultiplexing using FWM was reported in [19'. 

16 



Chapter 2 Optical TDMA networks 
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Control 

Figure 2.8: Ultrafast Nonlinear Interferometer 

2.4.3 Optical Clock Recovery 

All-Optical Clock Recovery circuit is a crucial part of an OTDM network as 

the receiver node needs to extract this timing reference from the incoming data 

stream before the received optical data can be detected, synchronized or regen-

erated correctly. Some of the approached are explained below: 

I n jec t ion Lock ing 

Injection locking utilizes a self-pulsation laser diode or a mode-locked laser whose 

output repetition frequency is locked to that of the injected optical pulse train. 

However, it may suffer from phase error in timing with respect to the injected 

signal when a lower speed clock is to be extracted. For semi-conductor mode-

locked laser, this problem can be alleviated by cascading two mode-locked laser 

together with an SA optical gate [20]. 40-Gb/s clock extraction using mode-

locked semi-conductor lasers has been demonstrated[20 . 
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Phase look loop c i rcu i t 

A travelling-wave laser diode amplifier is used as an all-optical phase detector 

yielding the phase difference (cross-correlated signal) between the input signal 

and the optical clock pulse train through all-optical gain modulation or FWM. 

2.4.4 All optical logic gates 

High speed OTDM network will operate at data rate as high as 100 Gb/s. 

It is important that digital data passing through a network node is processed 

optically at a high speed. To realize optical digital data processing, all optical 

logic gates become necessary. To date, most of the optical logic gates proposed 

take advantage of intensity-dependent transmission or the intensity-dependent 

refractive index of optical waveguides. Typically, short optical pulses are used 

to induce these nonlinearities because of their high peak power. 

The simplest optical logic gates are NOT gates which can be implemented 

using cross gain saturation in active semiconductor waveguides. Another simple 

logic gate is all-optical AND gate based on four wave mixing. To realize logic 

gates other than AND and NOT, interferometric switches, based on intensity de-

pendent refractive index effect of waveguides, can be used. The most frequently 

used interferometric switches are NOLM or TOAD. Using these switches, AND, 

NOT and XOR operations have been demonstrated. In addition, OR and NOR 

operations have been demonstrated using UNI [21. 

Although all the key logic gates can be implemented optically nowadays, they 

suffer from a number of severe drawbacks. These optical logic devices are bulky 

in size, difficult to construct and hard to stabilize. Further, unlike electrical logic 

18 



Chapter 2 Optical TDMA networks 

devices, they usually need 3 optical inputs: 2 logic input and 1 clock stream. 

To induce the nonlinear effects in the interferometric switches effectively, the 

power requirement for these inputs are very high. Peak power of several dBm 

are necessary. These weaknesses limits the application of the above mentioned 

logic devices. For Optical TDMA networks to be deployed commercially, more 

compact and stable logic gates need to be developed. 

2.5 Summary 

In this chapter, optical TDMA and the associated network architectures and key 

technologies are described in detail. Generally speaking, optical TDMA network 

offers the advantages of ultra high data rate, simpler network management and 

control (as only a single time domain channel is used) and provisions of flexible 

and true bandwidth-on-demand services and high speed digital signal processing 

for data regeneration, buffering and coding. It will become an important class 

of optical network that can satisfy the demand for broadband services in the 

future. 
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Chapter 3 

A Channel-Tunable Mode-locked 

Laser Transmitter for OTDM 

Networks 

3.1 Introduction 

Recently, technologies for ultrahigh-speed optical time-division-multiplexed (OTDM) 

systems have advanced tremendously that terabit/s per channel capacity may be 

realized in the near future. Different from a point-to-point transmission system, 

for future boardband multimedia network using optical media, it is necessary 

to implement multi-access or switching functionality to allow interconnection 

between any two nodes. 

In an bit-interleaved OTDMA networks, data intended for different nodes can 

be assigned to different channels (time slot) within one time frame. Therefore a 

channel-tunable transmitter or receiver that can tune its channel to a particular 
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time slot is required [22, 8]. Channel tuning time should be comparable to bit 

duration in order to reduce the guard time required between channel tuning, 

which is directly related to network throughput. Previously, channel tuning 

functionality was implemented using Optical Tunable Delay Line (OTDL) or 

fiber coupler connected to fibers with different lengths. The earlier configura-

tion suffers from slow tuning time while the later one suffers from considerable 

insertion loss and thus degraded power budget. 

Mode-locked lasers have been demonstrated to generate high repetition rate 

ultra-short optical pulses which are essential to high-speed OTDM applications 

23]. In particular, semiconductor Mode-Locked Laser Diodes (MLLD), with 

their compact size, stable output and the ability to generate transform limited 

optical pulses with repetition rate as high as 40GHz, are considered a good source 

for OTDM networks. In this chapter, a scheme incorporating channel tuning 

ability into OTDM source using MLLD is proposed. A 10-Gb/s transmitter 

based on a hybrid MLLD capable of generating 2.6 ps optical pulses [24] is 

used in the experimental demonstration. Channel tuning is achieved by tuning 

the phase of the RF sinusoidal signal that drives the SA section of the MLLD. 

Section 3.2 will cover the operation principle of the channel tunable transmitter. 

3.2 Principle of Operation 

A typical semiconductor MLLD consists of a laser cavity with a gain section, 

a modulation section, and a passive waveguide section. The gain section is for 

optical carriers generation and amplification, and the modulation section, which 

is usually a Saturable Absorber (SA), severs as a gate that allows optical signal 
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to pass though periodically. 

§ 
VboJ U 

> \ j y GAIN 

MLLD 

Figure 3.1: The structure of an MLLD 

When a constant current is applied to the gain section and a reverse bias 

voltage is applied to the SA section, the device operates in passive mode-locking 

regime in which an impulse train with repetition rate equals the fundamental or 

harmonic of laser cavity round trip frequency is generated. The pulses generated, 

however, are not synchronized to any external signals and the time jitter of the 

pulses is large. This renders the pulses unusable for communication purposes. 

When An RF sinusoidal signal with a frequency {fmod) equal to one of the 

harmonics of laser cavity mode is applied to the SA, the steady impulse train will 

be synchronized to the phase of the driving RF signal. This mode of operation 

is called hybrid mode-locking. In this case, the MLLD can be used as the optical 

source for generating RZ pulses for OTDM networks. 

Using this device, channel tuning functionality can also be realized. Since the 

pulses are synchronized with the input RF signal to the SA section, if the phase 
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of the driving signal is altered, optical pulses will also be shifted to different 

time slots after a transient period in which the original mode-locked pulses are 

suppressed and new pulses are formed. 

V V V V MLLD ~ ~ 

V Y V V MLLD ~ ~ ^ L 

Figure 3.2: The principle of channel tuning 

3.3 Experimental Demonstration 

Figure 3.3 shows the schematic of a channel tunable transmitter using MLLD. 

An RF signal is delayed by an electrical channel-tunable delay circuit which has 

a switching time about 3 ns. After propagating through the delay line, the RF 

signal will have a different phase depending on the path it propagates. This RF 

signal is then used to drive the SA section of a mode-locked laser diode causing 

pulses in different time slot to be generated. 

The MLLD device used in the experimental demonstration is shown in Figure 

3.4. The length of the gain section is 4344/zm while the length of the SA section 

is 150̂ 771. This gives a round trip distance of 8988/zm thus the repetition rate 
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Figure 3.3: schematic of a Channel tunable transmitter 

of the pulses is about lOGHz. The width of the pulse is found to be 2.6ps from 

autocorrelation measurements as shown in Figure 3.5(a). The optical spectrum 

is shown in Figure 3.5(b) and the RF spectrum in Figure 3.6. 

The demonstration channel tuning circuit is designed for a 40-Gb/s and 4-

channel optical TDM system. Each TDM frame has 4 time slots, each carrying 

a single bit and has a duration of r二25ps. The electronic channel tuning circuit 

consists of 2 stages of 1 x 2 RF switches (HMC132C8 from Hitti microwave) 

as shown in Figure 3.7. These switches are controlled to select between the 

upper paths or the lower paths that have relative time delays of I r and 2丁 

respectively. Thus the RF signal can have a relative delay of 0，丁, 2r and 3r 

respectively depending on the on-off status of the switches [22]. The delayed 

RF will then give rise to delayed mode-locked optical pulses. Figure 3.8 shows 

the waveform of the mode-locked pulses that are tuned to channel 1, 2, 3 and 

4 respectively. Note that the pulse width appears to be considerably broader 
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Figure 3.4: MLLD mounted on an LD carrier 

owing to the fact that the signal was detected using a 20-Gb/s optical receiver. 

Though only 4 channels are implemented in the experiment, it demonstrates 

the feasibility of channel tuning scheme using Mode-locked lasers. A TDM 

system with more channels can be constructed with this MLLD. The number of 

channel is limited, in principle, by the ratio of the optical pulse separation and 

the optical pulse width. With this MLLD device, which generates optical pulses 

with 2.6ps pulse width at lOGHz, it is feasible to construct a TDM system with 

aggregate data rate of 100 Gb/s. 

3.4 The Channel Tuning Transient 

One parameter that is of major concern to network designer is the duration of the 

transient period, which directly affects the channel-tuning time of the network's 
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Figure 3.5: (a) Autocorrelation trace of the optical pulses generated by MLLD 
(b) Optical Spectrum of the mode-locked pulses 
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Figure 3.6: RF spectrum of the optical output 

medium access control protocol. To achieve a high throughput network, it is 

necessary to minimize the channel tuning time. 

Though the turn-on dynamic of a hybrid mode-locked lasers has previously 

been investigated [25], to our best knowledge, the transient effect due to the 

tuning of the RF driving signal has not been discussed. The behavior of the 

pulse generation during the channel-tuning transient is rather different from the 

turn-on transient which is the initial transient behavior exhibited by the laser 

without any prior driving signals. When the phase of the driving signal is tuned 

from one phase ((fi：) to the other ((/)2)，the originally established mode-locked 

condition is destroyed and a new mode-locked condition will be re-established. 

Theoretically, channel-tuning transient depends on several factors, including the 

residual photon and electron carrier distribution in the laser cavity at the end 

of the first phase, the photon lifetime, the new phase of the driving signal and 
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Channel Tunable Delay Circuit 

RF input ~ ^ 、 z 」 L 、 ^ RF Output 

Z I \ 
1 by 2 RF Channel Tuning Logic Microstrip 

Switch Lines 

Figure 3.7: Schematic of the channel-tuning delay circuit 

other factors as in the turn-on transient. It is expected if the phase change of 

the driving signal during channel tuning is small, it is easy to re-establish a new 

mode-locked condition. 

3-5 Experimental Investigation of channel-tuning 

transient 

The observation of the channel-tuning transient is not simple, especially at high 

repetition rate. To observe such a phenomenon, we switch the phase of the 

driving signal alternatively between two phases ((/>! and ^2). If the transient 

effect is periodic, we then can obtain the information of the channel-tuning 

characteristics of the mode-locked laser from a digital sampling oscilloscope. 

The experimental setup for investigating the channel-tuning transient is il-

lustrated in Figure 3.9. It consists of two stages. The first stage is responsible 

for generation of sinusoidal driving signals with periodic phase changes. The 
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Figure 3.9: Experimental setup to investigate channel tuning transient 

RF signals are then fed into the SA section of the MLLD. The generated RF 

signal is a 10-GHz sinusoidal signal that changes phase every 32 cycles. We use 

an optical means to minimize the switching time in phase change, thus reducing 

the effect of the transient time of electrical signal. A CW DFB laser emitting at 

1550.10 nm is first amplified by an EDFA, and modulated externally at 10 GHz 

by a Mach-Zehnder external modulator. A second external modulator (IOC 

IOAP-MOD9001A) serves as an on-off modulator, gating the sinusoidal optical 

waveform into periodic on-off segments at 156.25 MHz. Both of the rise- and 

fall-time (20%-80%) of the IOC modulator are 30.8 ps, which are sufficiently 

short for switching on and off of the 10 GHz sinusoidal signal. The signals are 

optically amplified by a second EDFA to yield an average output power of 0.2 
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dBm. The optical signals are then received, amplified, and split into two differ-

ent paths, one of which has a variable delay. The delay is carefully adjusted so 

that the on portion of one path coincides with the off portion of the other. The 

combined signal exhibits a periodic phase change every 3.2 ns, and the time it 

takes to change from one phase to another is about 200 ps as shown in the inset 

of Figure 3.9. The relative delay between the two phases is 20 ps. The resultant 

RF signals are used to drive the MLLD. 
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Figure 3.10: The output of the Transient experiment 

Figure 3.10 shows the oscilloscope trace of the MLLD output. The transient 

is found to be < 2 ns (20 pulses) for this device. At phase changes, it is observed 

that the amplitude of the pulse train gradually subsides and rebuilds again. The 

amplitude of the mode-locked pules in one phase is higher than that in the other 

as the amplitude of the driving signals in the two phases are slightly different 

due to the unequal attenuation in the two delay paths. The details of the pulses 

generated are shown in the insect of Figure 3.10. The left trace is the optical 
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pulses generated in phase 1 and the right is for phase 2. The relative delay of 

the two traces is 20 ps ( 1/5 of the bit period). 

To compare this experimental result with other ultrafast pulse sources such 

as gain-switched FP laser and mode-locked fiber ring laser, which also require 

external RF driving signal, similar transient experiments have also been carried 

out with these devices. The experimental setup is shown in Figure 3.11. The 

Laser diode driver 

RFAmp j I 
RF Mixer ^ ~ ~ ~ I 

Synthesized Signal >-0 RF ‘ 丨 [ ‘ 
Generator ^ ^ L _ •！117|一」 

Squarewave cp Laser 
Generator FP Laser 

(a) 

RF Mixer 

Synthesized Signal ^ ^ . Fiber Ring laser from 
Generator ^ L A J ^ PriTel 

I d i 

IF 

Squarewave 
Generator 

(b) 

Figure 3.11: Channel tuning transient experiments using (a) FP gain-switched 
laser (b) Mode-Locked fiber ring laser 

RF mixer, together with the signal generator and square wave generator, is 

capable of generating lOGHz RF signal with periodic tt phase change within a 

very short duration, as shown in Figure 3.12 This signal is then used to gain 
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Figure 3.12: The output of the RF mixer 

switch the FP laser or drive the fiber ring laser. In both cases, periodic changes 

in pulse position would occur after a transient period. For FP laser, the typical 

channel tuning waveform is shown in Figure 3.13. For a fixed repetition rate, 

the channel tuning time is found to depend on the DC bias current as well as 

the input RF power. The dependence of channel tuning time on these factors 

are shown in Figure 3.14. At a fixed DC bias, increasing RF modulation power 

would decrease the tuning time. If the RF power is fixed, increasing the DC 

bias will increase the channel tuning time as well. The maximum tuning time 

measured is 2.25 ns when the modulation power is 20.07dBm and DC bias is 

50mA. Beyond that value, period-doubling will occur. 

For fiber ring laser, the experiment was conducted on a ring laser clock source 

commercially available from PriTel, which has a fundamental frequency of 3.58MHz. 
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Figure 3.13: Typical Channel Tuning waveform form FP Gain-switched laser 

Because the length of the fiber laser cavity is much longer than that of a mode-

locked laser diode, the channel tuning transient occurs within a long period of 

time. The measured tuning time for this particular fiber ring laser is found to be 

22 ns, nearly 10 times as long as that of a gain switched FP laser. This channel 

tuning time can be found by noticing that before phase switching, the optical 

pulses are located in the middle of the grid line as shown in the upper portion 

of Figure 3.15. After about 22 ns, the pulses become aligned to the grid lines of 

the sampling scope as shown in the lower portion of Figure 3.15. 

Because the mode locked laser diode was accidentally damaged and the com-

ponents necessary to carry out the experiment on FP and fiber ring laser did not 

arrive at our laboratory until a much later date, the same experimental setup 

cannot be used on the mode-locked laser. As the experimental setup on these 

3 devices are different, the results cannot be compared directly. However, they 

do provide us with a rough comparison on the channel tuning time for these 
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Figure 3.14: DC bias current vs Channel tuning time 

devices. 

In the following chapter, it is shown using numerical simulation that the 

channel tuning time for a mode-locked laser reaches its maximum if the amount 

of phase change is close to 字.In the mode-locked laser transient experiment 

described previously, the amount of phase change, however, is only 字. I t is 

therefore reasonable to estimate that the maximum phase tuning time is more 

than 2ns if the device were to undergo a tt phase change in the RF driving 

signal. Based on this assumption, we can then conclude that the phase tuning 

time for the gain switched FP laser is shorter than that of the mode-locked 

laser diode, which, in turn, is shorter than that of the fiber ring laser. Though 
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Figure 3.15: Ring laser output before and after undergoing a phase change in 
RF driving signal 

the channel tuning time for the mode-locked laser is marginally longer than 

that of the FP laser, it remains a good pulse source for implementing channel 

tunable transmitter because of two reasons. The pulse width of mode locked 

pulses (2.6 ps) is generally shorter than that of gain-switched pulses (5-7 ps). 

Therefore, an extra pulse compression stage is usually needed to reduce the 

width of gain-switched pulses if they were to achieve the same pulse width as 

that of mode-locked pulses. Second, it is possible to use subharmonic mode-

locking techniques to generate tunable mode-locked pulses using lower speed 

electronics whereas for gain-switched laser the driving RF signal must always 

match the repetition rate of the pulse. 
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3.6 Summary 

We demonstrated a 10-Gbit/s channel-tunable transmitter for OTDM networks 

operating at 40-Gbit/s aggregate data rate. Channel tuning is achieved by 

tuning the phase of the driving RF signal to a hybrid mode-locked laser. The 

corresponding transient is found to be 2 ns (20 pulses) which is longer than 

that of a gain switched FP laser. 
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Chapter 4 

Modeling of Mode-Locked 

Semiconductor Laser 

4.1 Introduction 

Since its first demonstration [26], the research in picosecond or subpicosecond 

optical pulses generation using Mode-locked semiconductor lasers has had a lot 

of progresses. Passive mode-locked semiconductor lasers, in particular, have 

become promising candidates for high-speed applications because of their capa-

bility of producing ultra short high repetition rate optical pulses without the 

limitations imposed by driving electronics [27]. More importantly, it was shown 

theoretically that there is no fundamental limitation in mode-locking at fre-

quencies below lOOGHz [28]. With the recently developed Hybrid Mode-locking 

and Subharmonic Hybrid Mode-locking techniques, Mode-locked semiconductor 

lasers can now be able to provide stable pulse trains with very low level of phase 

noise and timing jitter. Therefore, mode-locked semiconductor lasers gives the 
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greatest potential for the development of reliable sources for ultra high-speed 

optical communications system. 

In order to fully utilize the potentials of mode-locked semiconductor lasers, it 

is important to understand the behavior of these devices. Numerical simulation 

is one method to achieve this target. 

In this chapter, the operation of hybrid and subharmonic hybrid mode lock-

ing in a semiconductor is simulated using a numerical model. The aims of the 

simulation are 

• to investigate the range of laser material parameters leading to stable 

mode-lock pulses; 

• to investigate the degree of amplitude modulation in subharmonic hybrid 

mode locking; and 

• to investigate the phase tuning transient of a MLLD when the phase of 

the driving RF signal is switched from one value to another. 

In the first section, the principle of mode-locking is introduced. Then, the 

numerical modelling method is described. Finally, the simulation result is pre-

sented. 

4.2 Principle of Mode-Locking 

The generation of mode locked ultra short pulses is based upon the confinement 

of the energy in a laser cavity into a small spatial region or the concentration 

of the optical power normally divided between the whole set of fluctuations into 

just one. The laser emission often consists of a set of resonator mode cj爪，m二 1， 
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2, 3..., separated by 5uj [13]. The number of modes that oscillate is limited by 

the spectral bandwidth 6ujg over which the laser gain exceeds the cavity loss. 

The output consists of a sum of frequency components that correspond to the 

oscillating modes, and the electric fields is given as (without taking into account 

the spatial distribution) [13 

E[t) = ^ Am exp i[{ujo + mSu)t + (pm] (4.1) 
m 

whereAm and (j)m represent the amplitude and phase of the mth mode. In 

general, relative phases between the modes are randomly fluctuating. If nothing 

fixes the phases (j)rn, the laser output will vary randomly in time, the average 

power being approximately equal to the average of the individual modes. On 

the other hand, if the modes are forced to maintain a fixed phase and amplitude 

relationship, the output of the laser will be a periodic function of time: 

邵)二々 W丄 / 2 ) exp(一) (4.2) 
where k is the number of locked modes and ti = t5(j)/Suj. 

In practice, mode-locking in semiconductor laser can be realized using a 

number of techniques, including active, passive, and hybrid methods. 

1. active mode locking - when an external RF signal is used for gain/loss 

modulation of a single contact diode laser; 

2. passive mode locking - when no external signal is used in a laser with a 

saturable absorber; 

3. hybrid mode locking - when an external RF signal is used for gain/loss 

modulation in a multiple-contact diode laser or in a laser with an intra-

cavity element that exhibits saturable absorption. 
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4.3 Simulation Model 

4.3.1 Travelling Wave Rate Equation Analysis 

The behavior of semiconductor laser can be described by rate equations for 

electron and photon density in the active layer of the device [29]. The two most 

important rate equations are the electron density rate equation and the photon 

density rate equation. 

dP p 
= msp + VgGP—— (4.3) 

at Tp 

f = 风 � i ⑶ （4.4) 
where P is the optical power, jS is the spontaneous emission coupling factor, 

Rsp is the rate of recombination of excess carriers, Vg is the group velocity, G 

represents the gain per unit length for stimulated emission, Tp is the photon 

carrier lifetime, N is the carrier concentration, J is the current density, q is the 

electron charge and d represents the thickness of the active region. 

Although the rate equation may be used to study both the transient and 

steady state behavior of the semiconductor laser, their merits are only limited 

to lumped interaction where the device is considered as a whole. This theoretical 

model cannot give explicit information about the frequency of oscillation, even if 

one uses specific information about gain as a function of frequency. Furthermore, 

the rate equations neither make allowance for nonuniformities in the field nor 

can they allow for the optical fields，s phase which is important for mode-locked 

lasers [30]. For these reasons, a travelling wave field analysis approach is essential 
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for successful simulation of mode-locking. 

The fundamental of travelling wave field analysis is a set of coupled travelling 

wave equations describing the propagation of optical field in a waveguide. This 

set of equations were originally developed for DFB laser [5 . 

The electrical field in the waveguide of a laser diode can be written as 

E[z,t) = + (4.5) 

where uq is the reference frequency and jSq is the propagation constant at Bragg 

frequency. E+(^z,t) and E-(z,t) represent the forward and reverse waves in the 

waveguide, respectively, luq is normally selected at the frequency of the gain 

peak. Inside a laser cavity, the fields E+[z,t) and E~{z, t) satisfy the time-

dependent coupled wave equations, expressed as 

1 8 d 
+ 五)五+(之，t) = {g-i6-as-hi)E+(z, t) + + ihi)E— (z, t) + (4.6) 

( 7 瓦 + 石)丑-(之，亡）二 (9-iS-as- hi)E-{z, t)+i{K-{- ihi)E+ {z, t) + (4.7) 

and E- [z,t) are forward and backward propagating E fields respec-

tively. K, is the coupling coefficient between forward and backward waves. Vg is 

the group velocity, 5 is the detuning factor, hi determines the radiation loss for 

the second order grating and a^ is the waveguide loss caused by free electron 

absorption and scattering. The spontaneous noise coupled into the forward and 

backward fields are given as 5+ and s一 

4.3.2 Large Signal Time Domain Mode-locked Laser Model 

In this section, the fundamentals of the Large-Signal time domain model is 

presented for calculating the dynamic response of a mode-locked Fabry-Perot 
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Semiconductor Laser. The algorithm is based on solving the time-dependent 

coupled wave equations. 

Fabry-Perot Semiconductor mode-locked Laser consists of gain sections and 

an absorber section. Unlike a DFB laser, grating structures are absent from the 

active gain area, thus no coupling occurs between the forward and backward 

fields. The fields E+[z，t) and E~{z, t) time-dependent coupled wave equations 

inside the laser cavity can then be simplified to 

+ = ( 一 - a 料 " … + (4.8) 
1 dE-(z,t) dE-(z,t) , 「 、 ” ， 、 ， 、 

+ = 善 a s ) 丑 t ) + (4.9) 

The complex fields t) include the amplitude and phase information. 

The spontaneous noise is driven by 5+ and 5_ which couple into the forward 

and backward fields. Vg is the group velocity, is the waveguide loss caused 

by free electron absorption and scattering. 

The field gain g is given by 

爹 r " i y : y 。 ) (4.10) 

where F is the confinement coefficient of the active layer. gN represents the 

differential gain or differential absorption. Nq is the carrier density at trans-

parency. £ is the gain compression coefficient. N is the carrier density. P is 

the photon density, and J is a detuning factor that accounts for the change of 

refractive index due to the variation of carrier density. 

The time-dependent carrier rate equation in the active layer is written as 

dN J N , , 
-1 - = BN^ — CN^ - GvgP (4.11) 
at qd T y \ , 
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where J is the current injection density, q is the electron charge, d is the thickness 

of the active layer, 丁 is the carrier lifetime, B and C are bimolecular and Auger 

recombination coefficients, respectively, G is the field gain. 

The time-dependent carrier rate equation in the absorber is written as 

f = (4.12) 
P is the photon density, which is given by the normalized power 

五+ f + I |2 (4.13) 

4.3.3 Modeling of Spontaneous Noise 

The spontaneous noise 5+ and s - are assumed to have a Gaussian distribution 

that satisfies the correlation 

(4.14) 

< s±{z,t)s±{z\t)〉= 0 

where Rgp 二 ^ ^ is the bimolecular recombination per unit length contributed 

to spontaneous emission, is the spontaneous coupling factor, and K is the 

transverse Petermann factor. is this case represents the Delta function. 

It has been proved by Petermann [30] that the spontaneous emission fields 

coupled to the forward and reverse waves have equal amplitudes. 

s±{z,t) = = s_{z,t) (4.15) 

4.3.4 Modeling of Self-phase Modulation 

Self-phase modulation (SPM) is caused by changes in the refractive index through 

carrier density changes. SPM produces variations in the round trip cavity time 
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and also adds to the excess bandwidth beyond the transform limit. This effect 

is included in the model through the detuning factor 5 which can vary along the 

structure 

5 = (cJo/c)lneffo - rovn你(Ao/47r)A7V(z，t)] (4.16) 

where c is the speed of light at vacuum. AN is the change of carrier density, 

and am is the material linewidth enhancement factor. 

4.3.5 Frequency Dependent Gain Profile 

The gain/loss profile in the laser is frequency dependent. This frequency depen-

dent effect is simulated by filtering the optical field gain by a Lorenzian filter. 

The frequency response for such a filter is 

H(uj) = ^ (4 17) 

where cjq is the central frequency, r is a parameter controlling the shape of the 

filter. 

4.3.6 Computation Procedure 

In order to solve the coupled wave equations 4.8 and 4.9, the finite difference 

equation approximation is applied to the partial differential terms. For this 

approach, the laser is divided into a number of equal small sections with length 

Az = L/M (4.18) 

where L is the length of the laser and M is the number of sections. 

The time and spatial steps are taken to be equal to 

Az = VgAt (4.19) 
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The Central Difference Method is then used to provide a precise and stable 

solution. By applying the Central Difference Method to field equations 4.8 and 

4.9, we get 

1 4- ^ ( a - ry ) - j ^ S 
丑+(2,力 + A 力 ) = + - Az,力)+ A 〜 （ 4 . 2 0 ) 

1 + - Of ) _ j ^ S 
E � , ^ 1)1 ： 二 2 二 五 - ( z — A . , t) + (4.21) 

丄—^[g - ois) + z 了 (） 

By choosing z 二 0 at the left-hand facet, the boundary condition for the 

forward and backward waves at the facets can be written as 

五+(0，t) = rLE-(Q,t) (4.22) 

E - { L , t ) 二 (4.23) 

where r^ and tr are the amplitudes of the facet reflections. 

By knowing the field value at time t and location z, the fields for forward and 

backward waves at the next time step t + At can be determined at the position 

z-\-Az and z - Az respectively from Equation 4.20 and Equation 4.21. In each 

time step, the field gain g, detuning factor S, effective index Ueff and the carrier 

density N will change according to Equation 4.10，4.16，4.11 and 4.12. 

All equations involved in the calculation are solved numerically, all param-

eters are assumed to be constant in a subsection. A self-consistency system is 

formed for the calculation of the electric field 丑+(2，t) and E~{z, t) ane the car-

rier density N�z, t) through the photon density P{z, t) in each section at each 

fixed time step At. 
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4.4 Device Parameters 

The device being simulated is a semiconductor laser with a gain section and a 

saturable absorber section. The parameters used are shown in Table 4.1 

Parameter Symbol Value Unit 
Group Velocity Vg 0.85 x 10® ms'^ 
Effective Refractive index n g " 3.53 
Internal Cavity Loss h 10 cm一 i 

Width 2 fim 
Depth 0.07 fim 
Confinement Factor F 0.1 
Wavelength Aq 1550 nm 
Injection Current I 80 mA 
Carrier Lifetime in Gain Section Tg 5.0 ns 
Radiation Recombination Bg 1.5 x 10-1� 

Auger Recombination Cg 1 x 10—29 
Transparency Carrier Density in Gain section Nog 1 x 
Output Facet REflectivity R 0.7 
Gain Compression Factor Sg 2 x cw? 
Differential Gain cxg (0.1 - 2.5) x 10—�5 cm^ 
Linewidth Enhancement Factor an 2-6 
Carrier Lifetime in Absorber Section r^ 5-20 ps 
Transparent Carrier Density Noa 0.75 x 
Absorption Compression Factor Sa 4 x cvn? 
Differential Absorption aa (0.5 - 4) x err? 
Length of Gain Section 899.193 fim 
Length of Absorber Section 108.694 /zm 
Device Length L 1.007887 mm 

Table 4.1: Device Parameter for Simulation 

A repetition rate around 40GHz is chosen for the simulation primarily be-

cause of the trade-off between accuracy of the simulation and the length of sim-

ulation time. The spatial step chosen for simulation of this device is 9.88125 x 

10—6. This is equivalent to a time step of 112/s which is much shorter than the 

carrier lifetime of the device. Thus the dynamic behavior of the laser during 
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mode-locking can be to accurately simulated with this time step. With this 

time step, the device length has to be relatively short to allow the simulation to 

finish in a reasonable period of time. It was chosen to be around 1mm which is 

equivalent to a device with repetition rate of aroudn 40GHz. Note that while 

choosing the particular value of device lengths and the simulation time step, the 

spectral characteristic of the laser is taken into consideration. The time step is 

chosen in such a way that the sampling bandwidth is wide enough to faithfully 

reproduce the spectrum of the laser while the emission wavelength is located at 

the center of the modeling bandwidth coinciding with the gain peak of the laser 

cavity. 

4.5 Simulation Results on Passive Mode-locking 

In this section, the simulation results obtained using the large signal time domain 

modelling method as presented in the previous section are described. 

4.5.1 Pulse Repetition Rate under Passive Mode-locking 

For the case of passive mode-locking, the repetition rate of the pulse train is 

determined by the round trip time. For the device being modeled, the repetition 

rate is given by 

- = 2 x 1 . � 7 x 1 � - 3 = 4 2 . 1 6 7 ^ (4.24) 

A typical pulse train is shown in Figure 4.1. As can be observed from the figure, 

the repetition rate is indeed close to 42.167GHz. 
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Figure 4.1: A typical mode locked pulse trains 
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4.5.2 The effect of Differential Gain and Differential Ab-

sorption on Mode-locking Regimes 

In this section, the effect of different combinations of differential gain and differ-

ential absorption parameters on the passive mode-locking regimes are studied. 

With the absorber carrier lifetime fixed at 5p«s，the differential gain and differen-

tial absorption parameters are varied over a wide range. The simulation result 

is shown in Figure 4.2. 

1 0 「 来 来 来 来 来 来 来 来 夹 来 * 来 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 

9 - 来 来 来 来 来 来 来 来 来 米 来 来 y i 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 

8 - 来 来 来 来 来 来 来 来 来 来 来 / { ) 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 ！ ^ 

\ 
^ 7 -来来来来来来来来呆来 / 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 / A A A 

i 6 -来来来来来来来来米々〇 〇 〇 〇 〇 〇 〇 〇 〇 O / ^ A A A A 
• I Continuous Wave Mode Locking ^ ^ Self Pulsation 
^ 5 -来来来来来来束-来来〇 〇 〇 〇 〇 〇 〇 〇 / ^ A A A A A A A 
1 I 7 
^ 4 -来来来来来米来米y b 〇 〇 〇 〇 〇 〇 O / A A A A A A A A A 

3 - 来 来 来 来 来 本 来 〇 〇 〇 〇 〇 / A A A A A A A A A A A A 

2 -来来来来来来来来 y l 〇 〇 〇 O / A A A A A A A A A A A A A 
1 ~ t y X % % % % L : i ‘ . • _ . _ . _ _ . Nois戸 _ _ _ _ _ _ _ ^ 

0 5 10 15 20 25 
Differential Absorption (cm^) * 10"''® 

Figure 4.2: Different regimes of mode locking operation 

These results indicates a number of operation regimes, namely mode locking, 

continuous wave, self-pulsation [31] and noise output [32], for passive mode 
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locking laser. The waveform of these outputs are shown in Figure 4.3 
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Figure 4.3: The output of mode-locked laser in CW, mode-locked and self-
pulsation regimes 

The region in which mode locking occurs agrees with the well-known neces-

sary conditions for mode-locking in semiconductor lasers 

Ta < Tg (4.25) 

tta > Q；̂  (4.26) 
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That is, the absorber carrier lifetime r̂  needs to be smaller than gain carrier 

lifetime Tg and the differential absorption ag has to be larger than the differential 

gain ag [4]. It can also be observed that the lower bound and the upper bound 

of the passive mode locking range tend to shift as ag increases giving a wider 

operating range for passive mode locking. 

As Ta increases, passive mode locking will give way to self-pulsation. This can 

be explained by using the time dependent carrier rate equation in the absorber 

section 

# 二 丄 崎 - / V (4.27) 

dt Ta . 1 + eP ^ ^ ^ 

Using this equation, the steady state carrier concentration can be expressed 
as 

" = + (4.28) 

Increasing the differential absorption has the effect of decreasing the rate of 

change of the absorber carrier concentration and increasing the absorber carrier 

concentration. Initially, large differential absorption would prevent the laser 

from lasing. The carrier concentration and gain in the cavity would then build 

up with time until the threshold is reached. A large optical pulse bleaches the 

absorber but then depletes the carrier density so that any gain is quenched and 

pulse production ceases. This process continues repeatedly thus self-pulsation 

can be observed. 
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4.5.3 The Effects of Linewidth Enhancement Factor and 

Absorber Carrier Lifetime on Mode-locking Pulse 

Width 

To observe the effect of the absorber carrier lifetime and the linewidth enhance-

ment factor on the pulse width, the pulsewidth of the generated pulses are 

recorded for a range of different values of linewidth enhancement factor and ab-

sorber carrier lifetime. It is found that changing linewidth enhancement factor 

and the absorber carrier lifetime will change the pulse width as shown in Figure 

4.4. 
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Figure 4.4: Pulse width vs line width enhancement factor at different absorber 
carrier lifetime 
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It can be seen from Figure 4.27 that decreasing absorber carrier lifetime will 

result in the increase of the rate of change of absorber carrier concentration. The 

higher rate of change would allow the absorber to have a higher absorption rate, 

thus it is reasonable to observe that a shorter absorber carrier lifetime would 

give rise to a pulse train with narrower pulse width as shown in the figure. This 

result also generally agrees with the simulation result in [33] as shown in the 

inset of Figure 4.4. Note that the inset is in linear-log scale. Increasing linewidth 

enhancemnt factor can also increase the pulse width. However, its effect is only 

minimial when compared with that of absorber carrier lifetime. 

4.6 Simulation Results on Hybrid and Subhar-

monic Mode - locking 

Besides passive mode locking, the model derived in this chapter can also be 

used to simulate the behavior of hybrid and subharmonic mode locking. In this 

section, the simulation results are presented. 

4.6.1 Modeling the Effect of Modulation on Absorber 

Section 

To modulate the reverse bias voltage of the absorber section, a sinusoidal electri-

cal signal is applied to the reverse bias together with a DC biasing offset at the 

saturable absorber. To simplify the simulation, it is assumed that the external 

signal would only modulate the absorber carrier lifetime [25]. Hence the effect 
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can be simulated by replacing the constant value r^ by 

f 

Ta = Tdc + racSin{27r-^t) (4.29) 
1�s 

where Ns is the subharmonic number and f represents the fundamental mod-

ulation frequency, which is equal to inverse of round-trip travelling time of the 

laser cavity. 

4.6.2 Modulation Phase Change Dynamics 

The RF signal applied to the SA section of the mode-locked laser serves as a 

reference to which the output optical pulses is synchronized. If the phase of the 

RF signal is changed, the relative position of the output pulses will inevitably 

be changed. This has been experimentally demonstrated and reported in [34 . 

However, the detail phase change dynamics has not yet been studied primarily 

because such phenomenon is very difficult to observe experimentally. In this 

section, the dynamic behavior of the mode locked laser during phase tuning is 

studied using the simulation model. 

As confirmed by the experimental demonstration, the mode-locked optical 

pulses would appear in different relative positions as the phase of the RF driving 

signal changes. The amount of shift of the pulses is proportional to the amount 

of phase change in RF driving signal as can be observed in Figure 4.5. 

This change, however, does not occur instantly when the RF phase is changed. 

The laser would undergo a transient period before the optical pulses finally sta-

bilized into the new steady state position. The duration of the transient period 

is found to be related to 2 factors, the amount of phase shift and the applied 

RF power. Their effects are summarized in Figure 4.6. Here, we found that 

55 



Chapter J,. Modeling of Mode-Locked Semiconductor Laser 

x10i。 x10i。 
4 1 ： 1 4 1 • 1 

(a) (e) 

i I i i in i I i i I i I i i i|；|| iI 
2 2 :• 

0丨|丨丨|丨丨|丨丨丨丨；丨丨丨丨丨丨丨丨1丨丨丨丨丨丨丨 0丨丨 ‘ ‘ l U U l •丨丨丨1 l U U U U l II 
0 10 1 0 0 2 0 0 3 0 0 0 10 1 0 0 2 0 0 3 0 0 
X 1 0 X 1 0 

4 1 1 ！ 4 1 1 1 

(b) (f) 

1 1 1 11 1 I I 1 I I I 1111:1111:1111 
2 2 ； : 

qIj iJiJi.Ji.Ji.ii.ii..iLi;i. II. l u u i qI 11. li 11II; 11 n n. It-丨丨,丨丨 n 
0 10 1 0 0 2 0 0 3 0 0 0 10 1 0 0 2 0 0 3 0 0 
X 1 0 X 1 0 

4 i , 4 1 

(c) (g) 

J i . | l . | l l | l - l . l . l l l l . l . 1.1.1.1... 

: • :: 
0 ' ' “丨丨丨；丨 ” H “ ” ” “ “ ‘‘ 0'丨丨丨丨“"；丨I ” 1丨」1 J1 

0 10 1 0 0 2 0 0 3 0 0 0 10 1 0 0 2 0 0 3 0 0 
X 1 0 X 1 0 

4 | ！ 1 4 | ！ ： 

(d) (h) 

11 n 11 n; n n 丨 n i l : n n i f t 
2 2 :• ； 

0丨丨 11 j 丨 l U l j U U U U U I . I I 0' 11 II 11 11:11111 i l l . I i II 11 
0 1 0 0 2 0 0 3 0 0 0 1 0 0 2 0 0 3 0 0 

Time (ps) Time (ps) 

Figure 4.5: Relative position of the pulses when the phase of the RF is changed 
for an amount of from 0 (a) to 宇(h) 
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Figure 4.6: Transient time for laser output due to RF phase tuning 

the absolute amount of phase change plays an important role in deciding the 

transient duration. Since a change of 77r/4 in RF phase is equivalent to shift-

ing the RF phase backward by the amount of 7r/4, the maximum amount of 

phase change that could occur is actually tt. The maximum amount of transient 

duration occurs at about 宇 as can be seen in Figure 4.6. A further study is 

needed on this phenonemon. The amount of RF power applied to the laser also 

affects the transient duration. This effect can also be found in the figure where 

the curve using 70% modulation appears above the one using 90% modulation, 

which simulates a higher input RF power. This is reasonable as the higher the 

RF signal power the deeper the modulation on the carrier lifetime of the sat-

urable absorber would be. This helps to bring the pulses to the new position in 

a shorter time. 

During this transient period, the amplitude and the width of the pulses 
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Chapter J,. Modeling of Mode-Locked Semiconductor Laser 

change with time. The dynamic variation of amplitude and pulse width shows 

high dependence on the amount of phase change on the RF signal, as can be 

observed in Figure 4.7, 4.8, 4.9 and 4.10 respectively. 

4.6.3 Subharmonc Mode-Locking Induced Amplitude Mod-

ulation 

For a high repetition rate hybrid mode-locked laser operating at 40GHz or above, 

it is difficult to find an RF signal source that operates at that high frequency. In 

this case, subharmonic hybrid mode locking can be utilized. The subharmonic 

mode locking method make use of an RF signal at a frequency that is one of 

the subharmonics of the fundamental frequency. The drawback, as reported 

in [35], is that the subharmonic RF signal would cause amplitude modulation 

to be imposed on the output pulse train. Amplitude modulation on the pulse 

train would cause higher bit error rate in communication systems and would 

degrade the performance of the whole system. The phenomenon of amplitude 

modulation is investigated in this part. 

The effect of subharmonic RF driving signal on the amplitude of the pulse 

train is shown in Figure 4.11. It can be clearly seen that amplitude modulation 

is indeed present in the output pulse train. 

To quantitatively measure the effect of amplitude modulation, a measure-

ment parameter has to be chosen in such a way that larger amplitude modulation 

would give rise to a larger value of that parameter. We define this parameter as 

the ratio of the standard deviation a of the output pulse amplitude modulation 
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Figure 4.11: Pulse train for subharmonic number 2, 3 4 and 5 respectively 

and the mean fi of the output pulse amplitude. That is 

AmplitudeModulationParameter 二 二 (4.30) 

The subharmonic number dependence of the amplitude modulation parame-

ter is presented in Figure 4.12. For a constant RF power, the degree of amplitude 

modulation would increase as the subharmonic number increases. A possible ex-

planation, as suggested in [35], is that at a smaller subharmonic number, the 

driving frequency is actually higher. This frequency falls outside the modulation 

frequency band of the laser device and the laser cannot respond fast enough for 
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Figure 4.12: Amplitude modulation parameter vs Subharmonic Number 

this modulation signal. Thus for subharmonic mode locking, it is preferable to 

use an RF signal with a smaller subharmonic number. 

Another trend that can be observed from Figure 4.12 is that as the RF 

input power is increased, which results in the increase of modulation depth, the 

amplitude modulation increases as well. 

4.7 Summary 

In this chapter, a numerical model is derived from time dependent coupled wave 

equations to simulate the dynamics of passive and hybrid mode-locking. Using 

this model, a number of phenomena for mode-locked laser diode are investigated. 

These include the differential gain and differential absorption dependence of 
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mode locking regimes, output pulse width dependence on the absorber carrier 

lifetime and linewidth enhancement factor and the amplitude modulation for 

subharmonic mode-locking. The RF phase change dynamics in the mode-locking 

laser has also been investigated for the first time. 
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Chapter 5 

Conclusion 

5.1 Summary of the Thesis 

The objective of this thesis is to explore the feasibility of utilizing semiconductor 

mode-locked laser sources in a fast channel tunable transmitter and to investigate 

the behavior of a mode-locked laser diode through numerical simulation. 

Chapter 2 presented an overview of all-optical time division multi-access net-

works. The network architectures including broadcast network and switch-based 

network were described. The enabling technologies for OTDMA networks, such 

as ultrafast pulse source, multiplexer, demultiplexer, clock recovery circuit, were 

also presented. In chapter 3 an experimental demonstration of channel tunable 

transmitter for OTDM network using Mode-locked laser diode was reported. 

The transmitter operates in a 40-Gb/s OTDM network with per-channel data 

rate of 10 Gb/s. The channel tuning time for this device is about 2 ns. This 

value was compared with the tuning time of gain-switched laser and fiber ring 

laser. It was found that the tuning time for a gain-switched FP laser may be 
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shorter than that of mode-locked diode laser while the fiber ring laser has the 

longest tuning time, primarily due to the long cavity length. 

In Chapter 4, a numerical model for mode-locked laser was derived from 

well-known time dependent coupled wave equations. This model was used to 

simulate the behavior of passive and hybrid mode-locked diode laser. A number 

of parameters were changed to observe the effects on laser output. The de-

pendence of mode-locked regimes on differential gain and differential absorption 

parameters was investigated. It was found to match the theoretical mode lock-

ing conditions. Pulse width of mode-locked laser was found to be related to the 

absorber carrier lifetime as well as the linewidth enhancement factor. For hybrid 

mode-locking, we, for the first time, investigated the dynamics of the laser when 

the phase of the RF signal is shifted. The transient time was found to related to 

the amount of phase shift as well as the input RF power. During this transient 

period, the pulse width as well as the pulse amplitude would undergo a series 

of fluctuation before settling down to a steady state. RF driving signal induced 

amplitude modulation on subharmonic mode-locked laser was also investigated 

in the chapter. Our simulation suggests that lower subharmonic number would 

induce less amplitude modulation. 

5.2 Future Work 

Due to the device availability problem, a fully functional tunable transmitter 

node for OTDM network using the scheme proposed in this thesis was not im-

plemented. For future work, a network node incorporating pulse generation, 

channel selection and data modulation can be constructed. Another interesting 

67 



Chapter 5 Conclusion 

continuation on current project would be to use the mode-locked laser device 

to construct a network node that performs simultaneous wavelength conversion, 

synchronization and data regeneration by using injection locking properties of 

mode-locked diode lasers. 

For the numerical simulation, the modelling method can be further improved 

to accept external optical input and simulate the dynamics of optical injection 

locking. Recently, mode-locked lasers with a DBR section has been implemented 

36]. By applying different voltage to this DBR section, the pulse repetition rate 

of the laser can be slightly tuned. The effect of a DBR section on the mode-

locking process can be investigated using the numerical model described in this 

thesis, with some modifications. 
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