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Monitoring of Linearly Accumulated
Optical Impairments in
All-Optical Networks
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Abstract—Optical performance monitoring covers
a very wide range of measurements intended to help
ensure network performance and is essential for ser-
vice providers. We address the problem of solving the
linearly accumulated end-to-end impairments of a
special set of paths of interest in a reconfigurable all-
optical network. This set of paths of interest may in-
clude all the paths between any two communicating
nodes. The main focus is on the minimization of the
number of monitoring devices that are required. A set
of channels is injected into the network and moni-
tored. By using the correlation in the channel quality
between injected channels, a framework of algebraic
performance monitoring is proposed to derive the
channel quality of the paths of interest from the lin-
ear combination of the monitoring results of the in-
jected channel. The upper bounds on the minimum
number of monitoring devices required are derived
and constructively achieved for a general network.
For a special network in which all nodes are capable
of initiating and dropping the monitoring channels,
the fundamental limit on the minimum number of
monitoring devices is also achieved. The proposed
monitoring scheme for this kind of network can also
locate at least one fault, even if multiple faults occur.
We reduce the cost of monitoring by utilizing the in-
formation from the monitoring results and minimiz-
ing the number of monitoring devices.

Index Terms—All-optical networks; Fiber optics
communications; Networks; Optical communications.

I. INTRODUCTION

O ptical performance monitoring (OPM) covers a
very wide range of measurements intended to

help ensure network performance. It is used for vari-
ous applications, including signal quality character-
ization, fault management, active compensation, and
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uality of service provisioning. All-optical reconfig-
rable mesh networks impose great challenges on
PM because of the signal transparency and non-

tatic configuration for different channels. Optical sig-
als propagate through an all-optical network without
ptical-electrical-optical conversions at intermediate
odes. Thus, noise and signal distortions accumulate
long the entire channel paths. Monitoring devices
re usually installed to monitor the degraded signal
nd feed back the results of monitoring for adaptive
mpairment compensation. Many promising OPM
echniques [1–4] for different kinds of impairments
ave been proposed, such as optical signal-to-noise ra-
io (OSNR) monitoring [5–9], chromatic dispersion
CD) monitoring [10–12], and polarization mode dis-
ersion (PMD) monitoring [13,14]. On the other hand,
ata channels are set up and torn off dynamically in a
econfigurable network. It will be beneficial to optical
etwork management that the quality of the data
hannels can be estimated before they are established.
his provides some network management functions,
uch as channel setup, control, and optimization. With
his prior performance information, network opera-
ors can estimate the quality of different channel
aths and regard it as a metric for path computation
n the network layer [15]. However, it is impractical to

easure the performance of all possible paths indi-
idually to obtain this prior performance information
ecause the connectivity of the modern backbone net-
ork is high to provide high fault tolerance, and the
umber of possible paths between any two communi-
ating nodes is large. It is of great interest to network
perators to find an efficient way of estimating the
nd-to-end quality of the paths without probing them
ndividually. At the same time, the number of monitor-
ng devices should be small in order to minimize the
ost of monitoring.
A novel efficient algebraic approach is proposed

ere to derive the linearly accumulated end-to-end
mpairment of a special set of paths. This set of paths
f interest may include all the paths between any two
ommunicating nodes. In the proposed approach, a set
f channels, called “probing channels,” are generated
2009 Optical Society of America
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by probing modules and are injected into the network.
Their accumulated impairments are measured by the
monitoring devices, called “monitoring modules,” and
the results of monitoring are used to derive the lin-
early accumulated impairments of the paths of inter-
est. The paths of interest and the paths of probing
channels may not be the same. This study focuses on
the minimization of the number of monitoring mod-
ules that are necessary to monitor all the paths of in-
terest. The upper bounds on the minimum number of
monitoring modules required are derived for a general
network, and the corresponding monitoring scheme is
proposed. For a special network in which all nodes are
capable of initiating and dropping (not necessarily of
monitoring) the probing channels, a monitoring
scheme that achieves the fundamental limit on the
minimum number of monitoring modules is also intro-
duced. The monitoring scheme proposed for this kind
of network is also applicable for fault localization in a
network. At least one fault can be located, even if mul-
tiple faults occur, when the proposed monitoring
scheme is applied.

The paper is organized as follows: the network
model and the mathematical formulation are pre-
sented in Section II. Section III discusses the proposed
monitoring schemes for the networks with and with-
out nodes that can only route channels. Section IV dis-
cusses the fault localization ability of the probing
scheme proposed in Section III. Section V concludes

this paper. The proofs of two main theorems are given t
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n Appendix A, and examples are given to illustrate
he theorems.

II. NETWORK MODEL AND PROBLEM FORMULATION

. Network Model

The network is modeled as an undirected graph G
ith the total number of links L. The terms “graph”
nd “network” are used interchangeably hereafter. No
ink connects a node to itself, but multiple links be-
ween nodes are allowed. Every link consists of a pair
f fiber links that carry traffic for the two opposite di-
ections. It is assumed that any traffic path cannot
raverse the same link twice. Every node is classified
nto two kinds: “terminal” and “routing.” Both kinds of
ode can route channels, including both data and
robing channels, from the incoming ports to the out-
oing ports. However, only terminal nodes can initiate
nd drop the channels, while routing nodes cannot.
herefore, any communicating node is assumed to be
terminal node. For example, an optical add–drop
ultiplexer can be regarded as a terminal node,
hereas an amplifier can be regarded as a routing
ode. When a probing module or a monitoring module

s installed at a node, the ways of installation are
ummarized in the following table. When a monitor-
ng module is installed in a routing node, the probing
hannels monitored at the node are not dropped; they
ontinue to propagate until they meet a terminal node

o drop them.
How is a module installed
at a node?

Terminal node
(e.g., an add-multiplexer)

Routing node
(e.g., an amplifier)

Probing module
(e.g., a light source)

YES: attached to the add-port
to inject the probing channels
to the network.

NO: installing a probing
module at a routing node is
NOT allowed.

Monitoring module
(e.g., an OSNR monitor)

YES: attached to the drop-port
to monitor and terminate the
probing channels.

YES: probing channels are
tapped off by a coupler to the
monitoring module.
Networks are classified into two kinds according to the
existence of a routing node. The discussions in Section
III are divided into two parts accordingly, one on the
general networks with routing nodes and one on the
special case of networks without routing nodes.

The paper considers a generic impairment that ac-
cumulates additively in the reconfigurable all-optical
network. The impairment is assumed to be induced in
the links. Any impairment induced in the incoming
port or outgoing port of a node is aggregated to the
corresponding link impairment. Thus, node impair-
ment is not considered. Since two separate sets of op-
tical devices are used for the two opposite directions
along the link, the impairments induced in these two
directions are assumed to be independent. Two im-
pairment variables are assigned to each link to repre-
ent the impairment levels induced in both directions.
here are a total of 2L impairment variables, labeled
j for j� �1,2L�. Designate lj as the link associated
ith the impairment variable xj. Thus the accumu-

ated impairment of a path p is expressed as follows:

accumulated impairment of a path p = �
li is a link in p

xi.

�1�

or example, the noise figure, CD per unit spectral
idth, and the square of the PMD can be modeled, re-

pectively, as follows.
The OSNR is a significant indicator for optical

oise; the accumulated noise figure NFacc along the
hannel path with k hops can be expressed as [16]
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NFacc = NF1 +
NF2

G2
+

NF3

G3
+ ¯ +

NFk

Gk
,

where NFi is the individual noise figure of the ith hop,
for i� �i ,k�. All noise figures NFi and NFacc are ex-
pressed in log scale. The variable Gi is the cumulative
gain up to the ith hop. If each hop is fully compen-
sated, i.e., all Gi=1, the accumulated noise figure
NFacc can be expressed as a sum of noise figures in
each hop:

NFacc = NF1 + NF2 + NF3 + ¯ + NFk.

The CD in single-mode fiber is equal to the product
of the dispersion parameter, the path length, and the
spectral width of the light source, i.e., �TCD=DL��,
where �TCD is the CD, D is the dispersion parameter
in picoseconds per nanometer per kilometer, L is the
length of the path in kilometers, and �� is the spectral
width of the light source in nanometers. Assume that
the nonlinear effects of the fiber are negligible. The
spectral width is expected to be constant along the
path; thus the accumulated CD per unit spectral
width �TCD/�� (in picoseconds per nanometer) along
the channel path with k hops can be expressed as the
sum of the CD per unit spectral width �Ti /�� (in pi-
coseconds per nanometer), for i� �i ,k�, in each hop:

�TCD/�� = ��T1 + �T2 + �T3 + ¯ + �Tk�/��.

The statistical mean of the accumulated PMD along
a path is a root-mean-square of the sum of the PMD
along the path. Thus, the square of the accumulated
PMD of a path, PMDacc

2 , is the sum of the square of the
PMD in each fiber hop, �PMDfiber�2, and the square of
the PMD in each component, �PMDcomponent�2, along
the path:

PMDacc
2 = � PMDfiber

2 + � PMDcomponent
2 .

In this case, take PMD2 as the impairment variable xi
in Eq. (1). The squares of the PMD induced in the
components are aggregated in the square of the PMD
of the links.

Let the impairment variable xj� be the alias of the
impairment variable for the direction opposite that of

Fig. 1. Sample network for the illustration of the terminology in
j; i.e., two impairment variables xj and xj� are as-
igned to the same link for the two opposite directions.
hen the link is denoted lj� �lj�, it means that the link

s propagated through in the direction with impair-
ent variable xj� �xj�. As an example, Fig. 1 depicts an

xemplifying network that consists of L=5 links.
here are a total of 10 impairment variables assigned

o the 5 links, labeled from x1 to x10. The impairment
ariables x1 and x2 refer to the same link but indicate
he impairment level in both directions. The alias of x1
s x2�, and the alias of x2 is x1�. The link from node a to
ode b is l1, and the reverse link is l1� or is denoted l2.
imilarly, the alias of x3 is x4�, and the reverse link of l3

s l3�= l4, etc. In the rest of the paper, the prime is re-
arded as a reverse operator, i.e., path p� is the re-
erse of path p.
Network operators specify the paths whose linearly

ccumulated end-to-end impairments are going to be
erived. Let this set of paths of interest be Q. Three
ssumptions are made for Q:
Assumption 1. The set Q is assumed to contain at

east a path connecting each ordered pair of any two
erminal nodes. The assumption comes from the fact
hat network operators are interested in the end-to-
nd communications quality between any two commu-
icating nodes.
Assumption 2. If the two terminal nodes in the pair

re adjacent, the incident links between them must be
n Q. This is because the links between two adjacent
erminal nodes are the most direct paths connecting
hese two nodes.

Assumption 3. Any path of interest should be a sub-
ath of a path connecting two terminal nodes. A path
hat can never be a subpath of a data channel path is,
f course, not of interest. In practice, this assumption
s always satisfied, as routing nodes are the interme-
iate nodes to some destined terminal nodes.
It is worth noting that the paths of interest and the

aths of probing channels may not be the same. Ac-
ording to the level of network monitoring require-
ent, it is possible to include all possible paths be-

ween any ordered pair of terminal nodes in Q. For
xample, suppose the accumulated impairment of all
ossible paths between the two terminal nodes in Fig.
has to be derived. The set Q of paths contains 12

aths of interest:

q1:a → b → c,

q2:c → b → a,

q3:a → b → d → c,

q4:c → d → b → a,

q :a → d → b → c,
the paper.
 5
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q6:c → b → d → a,

q7:a → d → c,

q8:c → d → a,

q9:a → d,

q10:d → a,

q11:c → d,

q12:d → c.

In order to retrieve the accumulated impairment of
the paths in Q, a set of channels, called “probing chan-
nels,” are injected for monitoring. The accumulated
impairments of these probing channels are measured,
and the results are used to derive the accumulated
impairment of the paths in Q algebraically. The paths
of the probing channels are not freely defined unless
they fulfill the following three conditions:

Condition 1. Probing channels should be originated
and terminated at terminal nodes.

Condition 2. The source nodes of the probing chan-
nels should be installed with probing modules in order
to generate the probing channels.

Condition 3. The probing channels should propagate
through or be terminated at a node with a monitoring
module so that it can be monitored.

Note that the paths of probing channels may not be
the same as the paths of interest, and the paths of in-
terest may not satisfy the above conditions. For ex-
ample, one possible set of paths of probing channels
for the example in Fig. 1 is

p1:a → b → c,

p2:d → c,

p3:a → d,

p4:a → b → d,

p5:d → b → a → d,

p6:d → b → c,

p7:d → c → b → d,

p8:a → b → c → d,

p9:d → a → b → c.

Each probing channel is assigned a unique index.
Probing modules can generate multiple probing chan-
nels with different indices; meanwhile, monitoring
modules can monitor and identify all probing chan-
nels that propagate through or terminate at them.
The OPM results in that the monitoring modules, to-
ether with the corresponding indices, are assumed to
e collected to a monitoring center through a separate
rror-free network. The monitoring center stores the
aths of each probing channel and processes perfor-
ance information from the monitoring modules to

erive the accumulated impairment of the path of in-
erest.

. Mathematical Formulation

The accumulated impairment, denoted zi, of the
ath qi in Q can be expressed by zi=init�qi�
��j:lj�qi�

xj, where init�zi� is the initial impairment of
i induced in the transmitter module and is expected
o be known from the module specification. The accu-
ulated impairments of all qi in Q can be expressed in
atrix form: z−init�z�=Zx where z= �z1z2z3 . . .z�Q��T

nd init�z�= �init�q1�init�q2�init�q3� . . . init�q�Q���T. The
atrix Z is �Q��2L matrix with entry mij=1 if qi

ontains the link lj; otherwise, mij=0 and x
�x1x2x3 . . .x2L�T. On the other hand, the ith probing
hannel gives a linear equation, yi=init�pi�+��j:lj�pi�

xj,
here pi is the subpath, from the originating node to

he node at which the probing channel is monitored, of
he ith probing channel; init�pi� is the initial impair-
ent of pi induced in the transmitter module; and yi is

he OPM result. Let P denote the set of all these sub-
aths of probing channels; then y−init�y�=Yx, where
= �y1y2y3 . . .y�P��Tand init�y�= �init�p1�init�p2�init�p3�
. . init�p�p���T. The matrix Y is a �P��2L matrix with
ntry nij=1 if pi contains the link lj; otherwise, nij=0.
n order to simplify the notation, all init�qi� and
nit�pi� are assumed to be 0 throughout the paper.

Let 	M
 be the space spanned by the row vectors of
ny matrix M. When 	Y
� 	Z
, there is a �Q�� �P� ma-
rix K such that Z=KY. The entries in the matrix K
re the coefficients used in generating the row vectors
n Z from the row vectors in Y, and they can be solved
y Gaussian elimination. Then z=Zx=KYx=y. Thus,
he paper aims at finding a valid set of probing chan-
els that satisfies the three conditions in the network
odel part such that 	Y
� 	Z
. In view of this, the
umber of probing channels is lower bounded by the
ank of Z and upper bounded by 2L. The vector space
panned Y is determined by the locations of probing
odules, monitoring modules, and probing channel

aths. Let Np be the set of nodes that are installed
ith probing modules, and Nm be the set of nodes in-

talled with monitoring modules. A probing scheme
xists if there is a collection of the set Np, Nm, and P
uch that 	Y
� 	Z
. The corresponding set P is some-
imes referred to as the probing scheme for simplicity.

Example. The corresponding matrix Z of the set Q
n the previous example for Fig. 1 is a 12�10 matrix:
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Z =�
1 0 1 0 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0 0

1 0 0 0 0 1 0 0 1 0

0 1 0 0 1 0 0 0 0 1

0 0 1 0 0 0 0 1 0 1

0 0 0 1 0 0 1 0 1 0

0 0 0 0 0 1 0 1 0 0

0 0 0 0 1 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

� .

Although the total number of paths needed is 12 and
the total number of links is 10, the rank of the matrix
is only 9. To solve the accumulated impairments, it is
not necessary to solve all (total of 10) impairment
variables. It is possible to solve all the accumulated
impairments of all possible paths between terminal
nodes by using only nine probing channels. This is
achieved by the set of probing channels stated in the
previous example. The corresponding matrix Y is a 9
�10 matrix. 	Y
= 	Z
:

Y = �
1 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1 0 0

1 0 0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 1 0 1

0 0 1 0 0 0 0 0 0 1

0 0 0 1 0 1 0 0 1 0

1 0 1 0 1 0 0 0 0 0

1 0 1 0 0 0 1 0 0 0

� .

III. PROBING SCHEME

This section constructively proves the existence of
probing schemes by properly choosing the locations of
probing and monitoring modules. First a necessary
condition for the locations of probing and monitoring
modules is provided in Theorem 1 such that a probing
scheme exists. This necessary condition is assumed to
be fulfilled in the proofs of the following Theorem 2
and Theorem 3. The corresponding sufficient condi-
tion is stated in Theorem 2. The number of monitoring
modules required in the sufficient condition in Theo-
rem 2 is highly related to the existence of a cut node,
here a cut node is a node whose removal disconnects
he remaining network. Implicitly, the fewer cut nodes
here are, the fewer monitoring modules are required.
n the special of case of a network without routing
odes, a less restrictive sufficient condition is stated

n Theorem 3. Similar to Theorem 2, the sufficient
ondition is related to the existence of a bridge, where
bridge is a link whose removal disconnects the re-
aining network. The fewer bridges there are, the

ewer monitoring modules are required. Fortunately,
he optical backbone networks are usually highly con-
ected mesh networks in order to provide fault-
olerant service. For example, the National Science
oundation (NSF) backbone network (Fig. 2) is a two-
ode-connected network without a cut node or bridge.
hus the number of monitoring modules needed in
oth Theorem 2 and Theorem 3 is small.
Theorem 1 states a necessary condition for the sets
p and Nm such that a probing scheme exists. The
roof is by contradiction. It considers a node that is a
ource node or a destination node of the paths of in-
erest. If the node is out of Np�Nm, all probing chan-
els should route through the node without monitor-

ng. Thus, either none or an even number of
mpairment variables associated with the incident
inks of the node are involved in the row vectors in

atrix Y. This restricts the vector space spanned by Y
nd eventually leads to the contradiction 	Y
� 	Z
.
Theorem 1. Let src�p� and dst�p� denote the origi-

ating node and terminating node of any path p, re-
pectively. Let N denote the set src�Q��dst�Q�. If a
robing scheme exists, all nodes in the set
�NP�Nm.
Proof. The theorem is proved by contradiction. Let

� �1,2L� be an index set. For any matrix M with 2L
olumn vectors, denote M�J as a matrix such that the
th column vector of M�J equals the jth column vector
f M if j�J. All other column vectors in M�J are zero
ectors. The existence of a probing scheme implies
Y
� 	Z
. Consider a row vector u in Z such that u
k1v1+k2v2+ . . . +k�Y�v�Y�, where vi is the ith row vector

n Y for all 1� i� �Y�. For all k�J, masking all the kth
omponents of all the vectors in the equation to zero
eeps the equality. Thus 	Y�J
� 	Z�J
. The proof is di-
ided into three cases for any node n�N with differ-
nt degrees d.

ig. 2. The National Science Foundation (NSF) backbone network
s a two-node-connected network without cut nodes and bridges.
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Case 1: d=1. The node n should be a terminal node;
otherwise, it is a redundant node, as there is no data
channel route through it. Let the impairment vari-
ables assigned to the only incident link be x1 and x2.
In order to derive x1 and x2, n should be the originat-
ing node and the terminating node for at least one
probing channel. Therefore, it should be in Np�Nm.

Case 2: d=2. Refer to Fig. 3(a). Without loss of gen-
erality, let �x1 ,x3� and �x2 ,x4� be the impairment
variables for the two incident links, where dst�l1�
=dst�l2�=n=src�l3�=src�l4�. Let J= �1,4�. Suppose
n�NP�Nm. The only two possible nonzero row vec-
tors in Y�J are [1 0 0 1 0…0] and [0 1 1 0 0…0]. In con-
trast, [1 0 0 0 0…0], [0 1 0 0 0…0], [0 0 1 0 0…0], or [0
0 0 1 0…0] is one of the row vectors in Z�J by the defi-
nition of N. This contradicts 	Y�J
� 	Z�J
.

Case 3: d�3. Let �xj ,xd+j�, j� �1,d�, be the im-
pairment variables for the jth incident link of n such
that dst�l1�=dst�l2�=dst�l3�= . . . =dst�ld�=n=src�ld+1�
=src�ld+2�=src�ld+3�= . . . =src�l2d). Figure 3(b) shows
the case of d=4. Let J= �1,2d�. Similar to Case 2, sup-
pose n�NP�Nm. Assume that the ith probing chan-
nel propagates through n from the first link to the �i
+1�th link for i� �1,d−1�, the �d+ i−1�th probing
channel propagates through n from the �i+1�th link to
the first link for i� �1,d−1�, and the �2d−1�th prob-
ing channel propagates through n from the rth link to
the sth link for some r�1 and some s�1. Let wi be
the ith row vector of Y�J and w=−ws−1−wd+r−2
+w2d−1. Note that w is a 1�2L row vector with only
the first and �d+1�th components equal to −1 and oth-
ers equal to 0. Suppose the 2dth probing channel
propagates through n from the gth incident link to the
hth incident link. If g=1 or h=1, w2d� �w1 ,w2 ,w3 ,
. . . ,w2d−1�; otherwise, w2d=wd+g−2+wh−1+w. There-
fore, the rank of Y�J�2d−1 if no probing channel is
originated or terminated at node n. Let ek denote the
1�2L row vectors with only the kth component equal
to 1 and all other components equal to 0. The matrix
Z�J should contain a row vector ek for some 1�k�2d
by the definition of N. Suppose k�d; then ed+1
=wd+k−2−ek and e1=−ed+1−w. In contrast, suppose k
�d+1; then e1=wk−d−1−ek and ed+1=−e1−w. In both
cases, ej=wd+j−2−ed+1 and ed+j=wj−1−e1 for 2� j�d,

Fig. 3. (a) Impairment variables for a node with degree 2. (b) Im-
pairment variables for a node with degree d=4.
hich implies that the rank of
w1 ,w2 ,w3 , . . . ,w2d−1 ,ek�=2d�2d−1�rank of Y�J.
hus, the row vector ek� 	Y�J
, which contradicts

Y�J
� 	Z�J
. The theorem is proved.
The following lemma states a sufficient condition

or Np and Nm such that the accumulated impairment
f a path of interest q can be derived from a linear
ombination of the OPM results of a few probing chan-
els. The existence of the probing schemes stated in
heorem 2 and Theorem 3 is proved by choosing Np
nd Nm appropriately so that the sufficient condition
n Lemma 1 is satisfied.

Lemma 1. Let the operator � denote the concatena-
ion operator of paths. Consider a path p=pm+pt such
hat pm contains a subpath q, while src�pm��Np,
st�pm��Nm, and dst�pt� is a terminal node. If both
rc�q� and dst�q� are elements of Np�Nm, there exist
set of probing channels along the subpaths of p such

hat the linear combination of their monitoring re-
ults derives the accumulated impairment of the path
.
Proof. According to the property of src�q� and dst�q�,

he proof can be divided into four cases:
Case 1: Both src�q� and dst�q� are elements of Np. In

his case, src�q�=src�pm�.
Case 2: Both src�q� and dst�q� are elements of Nm.

n this case, dst�q�=dst�pm�.
Case 3: The node src�q��Np and dst�q��Nm. In this

ase, the path q=pm.
Case 4: The node src�q��Nm and dst�q��Np.

Fig. 4. Probing channels for four cases.
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Refer to Fig. 4; the accumulated impairment of the
path q can be solved by

Case 1: z=y1−y2.
Case 2: z=y1−y2.
Case 3: z=y1.
Case 4: z=y1−y2−y3.
The dotted lines in the figure represent the sub-

paths between nodes. The subpaths between the node
dst�pm� and the node dst�pt� can be a null path if
dst�pm� is a terminal node. The terminal node dst�pt�
is used to terminate the probing channels only if the
nodes at which the probing channels are monitored
cannot terminate them, i.e., if the nodes are routing
nodes. This proof is complete.

A. General Networks With Routing Nodes

1) Network Transformation: Recall that N is the set
src�Q��dst�Q�. Any path in Q can always be divided
into subpaths at every node in N. According to this di-
vision, if the segment contains only a single link, both
end nodes of the link are in N. This kind of segment is
called a “short segment.” If the segment contains mul-
tiple links, the originating node and the terminating
node of the segment are in N, while all intermediate
nodes are out of N. This kind of segment is called a
“long segment.” To derive the accumulated impair-
ment of the paths in Q, it suffices to derive the accu-
mulated impairment of all short segments and long
segments. Again, the necessary condition stated in
Theorem 1 is assumed to be fulfilled. To facilitate the
analysis, the network G is contracted and then decom-
posed into maximal two-node-connected networks.
The details of contraction and decomposition are dis-
cussed in the following.

Contraction of link between a node in N and a
node out of N. All links in the network G can be clas-
sified into three kinds: both end nodes are in N, both
end nodes are out of N, and exactly one of the end
nodes is in N while the other is out of N. Here “con-
traction” means the contraction of links of the second
kind: both end nodes are out of N.

Refer to Fig. 5. Note that, by contraction, all the
short segments are kept unchanged, while the long
segments are contracted to two-hop paths. In each of
these two-hop paths, both end nodes are nodes in N.
The middle node is obtained by contracting all the in-
termediate nodes of the long segment. This middle
node is called a “supernode.” The set of supernodes is
denoted S. Since there is at least a path between any
ordered pair of terminal nodes in Q, the set N contains
all terminal nodes, and thus no terminal node is con-
tracted into a supernode in S. If multiple long seg-
ments have intermediate nodes in common, all the in-
termediate nodes of these long segments are
contracted into one supernode. The contraction cer-
ainly hides the complex topology among the interme-
iate nodes. This simplification does not negate Theo-
em 2 below, as a probing scheme on this contracted
etwork implies a probing scheme in the original net-
ork. This will be discussed after the theorem is

ntroduced.
Decomposition into maximal two-node-

onnected subnetworks. A two-node-connected net-
ork is a network without a cut node. A single-node or
single-link network is a two-node-connected net-

ork by definition. A two-node-connected network is
proper” if it is not a single-node or single-link net-
ork, otherwise it is “improper.” Any network can be
niquely decomposed into maximal two-node-
onnected subnetworks by the equivalent relation in
roposition 1 below. The proof is based mainly on the

act that if two two-node-connected networks have
ore than a node in common, the union of these two

etwork forms a larger two-node-connected network.
oreover, by Proposition 2, a node is a cut node if and

nly if it belongs to multiple maximal two-node-
onnected subnetworks. Both directions of the proof
re by contradiction.
Proposition 1. Define la
 lb if and only if there is a

wo-node-connected subnetwork containing both link
a and lb. The relation “�” in the link set is a well-
efined equivalence relation. Since the equivalence re-
ation above induces a partitioning on the set of links,
he two-node-connection subnetwork induced by a
artition of links is maximal.
Proof. Since every link, together with its end nodes,

efines a two-node-connected network, the reflectivity

 l is fulfilled. Obviously, the symmetry l 
 l ⇒ l

ig. 5. Contraction of link between nodes out of N. A short seg-
ent is a link between nodes in N. A long segment is the segment

hat contains multiple links, and the originating node and the ter-
inating node of the segment are in N, while all intermediate nodes

re out of N. The middle nodes in the long segment are contracted
nto a supernode; thus the long segment becomes a two-hop path af-
er contraction.
a a a b b
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 la is naturally satisfied. In order to show that the
equivalence relation is well defined, the transitivity
la
 lb and lb
 lc⇒ la
 lc has to be shown for any links
la, lb, and lc.

Let Oa be the two-node-connected subnetwork that
contains links la and lb. Similarly, let Oc be the two-
node-connected subnetwork that contains links lc and
lb. Thus Oa and Oc have two nodes, src�lb� and dst�lb�,
in common. The subnetwork Oa�Oc is the two-node-
connected network that contains both links la and lc.
Therefore, the equivalence relation is well defined.

Proposition 2. According the equivalent relation in
Proposition 1, decompose the network into maximal
two-node-connected subnetworks. A node is a cut node
if and only if it belongs to multiple maximal two-node-
connected subnetworks.

Proof. Let n be a cut node in the network G. Each
adjacent node of n, together with n and the link be-
tween, forms a two-node-connected network. If all the
adjacent nodes of n belong to the same two-node-
connected subnetwork, these adjacent nodes are still
connected even if the node n is removed. This contra-
dicts that n is a cut node. Therefore, any cut node be-
longs to multiple maximal two-node-connected
subnetworks.

On the other hand, suppose n is not a cut node but
belongs to two maximal two-node-connected subnet-
works. The node n should be the only node in common;
otherwise, the union of these two-node-connected sub-
networks forms a larger two-node-connected subnet-
work. The nodes, except n, in these two subnetworks
are connected by some paths without the node n, as n
is not a cut node. Each of these paths induces a ring of
maximal two-node-connected subnetworks. This ring
of subnetworks forms a two-node-connected network,
as no node in these subnetworks is a cut node. This
contradicts that the two-node-connected subnetwork
that the node n belongs to is maximal. The proof is
complete.

2) Probing Scheme After Network Transformation: De-
fine H as the network obtained after the contraction of
network G. The analysis of the existence of a probing
scheme in network G is divided into several cases that
depend on the topology of network H. Recall that N in-
cludes all terminal nodes and also routing nodes that
are originating nodes or terminating nodes of some
paths considered in the set Q. Four trivial cases are
first excluded before the detailed discussion.

Case 1. If H has only one node, then the original
network G is a network with a single terminal node or
a network of routing nodes, with no need for
monitoring.

Case 2. If H has two nodes such that one is in N and
one is in S, there is only one terminal node in the
hole network. There is no need for monitoring.
Case 3. If H has two nodes such that both are in N

ut one of them is a routing node, there is still only
ne terminal node. There is no need for monitoring.
Case 4. If H has only a single link such that both

nd nodes are terminal nodes, certainly they are in N;
oth nodes should be in Np�Nm. The probing scheme
or this case is trivial.

Case 5. For all other situations, refer to Theorem 2.
Theorem 2. When H is a proper two-node-

onnected network, a probing scheme exists if there is
node in Np�Nm. Otherwise, H contains cut nodes.

uppose H is decomposed into maximal two-node-
onnected subnetworks. Consider the two-node-
onnected subnetworks that contain exactly one cut
ode of the whole network H. If there is a node in
p�Nm in each of these subnetworks, a probing

cheme exists.
Proof. See Appendix A. The proof is divided into four

ases. The first case considers short segments in a
roper two-node-connected network. The second and
hird cases consider long segments in a proper two-
ode-connected network. Both the first and the second
ases involve finding a ring subnetwork that covers
he short and the long segment, respectively. The ex-
stence of a node in Np�Nm in this ring subnetwork
mplies the solvability of the segment by Lemma 1.
he third case considers the situation when there is
o such ring subnetwork that covers the long segment
nd the node in Np�Nm. The last case artificially cre-
tes a proper two-node-connected network in a gen-
ral network with cut nodes so that every short seg-
ent and long segment can be solved by the methods

n the first three cases.
Recall that the paths of interest in the set Q are di-

ided into long segments and short segments at the
odes in N. Originally, the long segments contain mul-
iple links; after contraction of links whose end nodes
re out of N, the long segments become two-hop paths.
herefore, each long segment in network G maps to a

wo-hop path in network H or, equivalently, maps to
n input–output port pair of a supernode in H. This
ort pair corresponds to an ingress–egress node pair
n the subnetwork in G that contracts to the super-
ode. First assume that each input–output port pair
aps to at most only one long segment. In the proof of
heorem 2, the accumulated impairment of the two-
op path is derived. The derived accumulated impair-
ent is regarded as the accumulated impairment of

he original long segment. This implication is valid
nly if whenever the probing channel transverses the
wo-hop path in H, the probing channel transverses
he corresponding long segment in G. Explicitly, in or-
er to use Theorem 2 to derive the accumulated im-
airment of the short and long segments, there are
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two rules to follow. Whenever a probing channel is
routed through an input–output port pair of a super-
node,

i. the corresponding long segment is routed
through if the port pair corresponds to the long
segment; otherwise,

ii. an arbitrary fixed subpath that connects the cor-
responding ingress–egress node pair in the con-
tracted subnetwork is routed through.

Rule i raises a problem when there are multiple
long segments that correspond to the same input-
output port pair of a supernode. The probing channels
in the proposed probing scheme solve only one of the
long segments. In order to solve all of these long seg-
ments, multiple sets of probing channels have to be
used, one set for each of the long segments. The re-
dundancy can be removed by the linear dependency.

B. Networks Without Routing Nodes

In the special case of a network with only terminal
nodes, the set N contains all the nodes in the network
and no supernodes in the set S. All links have both
end nodes in N; therefore no contraction is required,
i.e., H=G. Moreover, every link connects two adjacent
terminal nodes; thus every link is in the set Q. It suf-
fices to consider the set Q containing all the links, as
the accumulated impairment of any path of interest
can be derived once the impairment variables of all
the links are known. The probing scheme in Theorem
2 certainly applies to this special case. However, the
nonexistence of a routing node offers advantages in
reducing the number of monitoring modules and
shortening the length of probing channel paths. A less
restrictive sufficient condition such that a probing
scheme exists is stated in Theorem 3, which requires
fewer monitoring modules. This reduces the capital
expenditure, whereas the reduction of the length of
probing channels by Theorem 4 reduces the opera-
tional expenditure.

Similar to the analysis for the general network with
routing nodes, the network G is first decomposed into
two separate maximal two-link-connected networks.
The decomposition is described in the following.

Decomposition into maximal two-link-
connected subnetworks. A two-link-connected net-
work is a network without a bridge, where a bridge is
a link whose removal disconnects the remaining net-
work. Any network can be decomposed into maximal
two-link-connected subnetworks and bridges by the
following proposition.

Proposition 3. Any network can be decomposed
into maximal two-link-connected subnetworks and
bridges. Also, the two-link-connected subnetworks are
interconnected by the bridges of the whole network.
Moreover, a link is a bridge if and only if it connects
wo maximal two-link-connected networks. Further-
ore, the decomposition is unique.
Proof. Let T denote the network obtained by con-

racting all links except bridges of network G. Claim
hat the network T is a tree network. Let B denote the
et of bridges in G. The link set of T is exactly the set

by definition. Remove a link lb in T, and suppose
hat T is still connected. This implies that the net-
ork G remains connected after the removal of the

ink lb, too. This is because any node in T is obtained
y contracting a connected subnetwork in G. This
eads to a contradiction. Thus T is a tree network.
his completes the claim.
Every node in T comes from a connected subnet-
ork in G. Let one of these subnetworks be O, and it

s contracted to a node nT in T. Claim that O is two-
ink connected. Suppose that the removal of a link l in

disconnects its end nodes src�l� and dst�l� in O.
ince l is contained in O, it should not be a bridge. So,
rc�l� and dst�l� should be connected in the original
etwork G through a path that does not contain l.
his path should contain some links in G that are not

n O, as l disconnects src�l� and dst�l� in O. This im-
lies that there is a ring subnetwork that contains nT
n T, as both src�l� and dst�l� are contracted into the
ode nT in T. This contradicts that T is a tree net-
ork. This completes the claim and the proof is com-
leted.
Theorem 3. When G is a two-link-connected net-
ork, a probing scheme exists if there is a node in
p�Nm. Otherwise, suppose that the network G is
ecomposed into maximal two-link-connected subnet-
orks. Consider the two-link-connected subnetworks

hat are attached to exactly one bridge of the whole
etwork. If there is a node in Np�Nm in each of these
ubnetworks, a probing scheme exists.
Proof. See Appendix A. The proof is divided into two

ases. The first case considers a two-link-connected
etwork. The second case considers a network with
ridges. The first case involves finding an Eulerian
ycle that covers the short segment and the node in

p�Nm. The existence of such an Eulerian cycle im-
lies the solvability of the short segment by Lemma 1.
he second case artificially creates a two-link-
onnected network in the general network with
ridges so that every short segment can be solved by
he method in the first case.

Since probing channels cannot propagate through a
ink twice, each of the two subnetworks that are dis-
onnected by a bridge should contain a node in Np and
node in Nm. Therefore, the proposed probing scheme
ses the lowest number of monitoring modules.
A two-node-connected network is two-link-

onnected, except in the special case of the single-link
etwork. Also, both end nodes of a bridge are cut
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nodes. Therefore, no proper two-node-connected net-
work contains bridges; any bridge should belong to its
own single-link, improper two-node-connected subnet-
work. In contrast, a two-link-connected subnetwork
may be further decomposed into two-node-connected
subnetworks if it contains cut nodes. In particular, the
maximal two-link-connected subnetworks described in
Theorem 4 may be further decomposed into two-node-
connected subnetworks. Thus, the number of maximal
two-node-connected subnetworks that contain exactly
one cut node of the whole network must not be less
than the number of maximal two-link-connected sub-
networks that are attached to exactly one bridge of
the whole network. Figure 6 shows an example to il-
lustrate the concept. In Fig. 6, there is only a single
two-link-connected network, but it has three two-
node-connected subnetworks, and two of them contain
exactly one cut node. This confirms that the number of
nodes in Np�Nm stated in Theorem 2 must not be less
than that stated in Theorem 3. Actually, Theorem 2
minimizes the total number of monitoring modules.

Besides the constructive proof in Theorem 3, the
next theorem shows that the set of minimum-length
probing channel paths suffices to give a probing
scheme when all nodes in the network are terminal
nodes. This is becauset, by proper indexing of these
minimum-length probing channel paths, they induce
a triangular matrix Y, and thus it spans the whole
vector space.

Theorem 4. Whenever a probing scheme exists, ev-
ery link in the network must be contained in some
paths from a node in Np to a node in Nm. For any link
lj, j� �1,2L�, where L is the total number of links, let
pj denote the minimum-length path that contains the
link lj such that src�pj��Np and dst�pj��Nm. Probing
channels along the paths pj, for all j� �1,2L�, give a
probing scheme. The total length of probing channels
in this probing scheme is automatically a minimum.

Proof. For any j� �1,2L�, there should be a probing
channel that propagates through the link lj in order to
derive xj. Therefore, there should be a path from a
node in Np to a node in Nm that contains lj if a probing
scheme exists. It is also a sufficient condition under
which a probing scheme exists as stated in Lemma 1.

Fig. 6. Single two-link-connected network that can be decomposed
into three two-node-connected networks.
et pj denote the minimum-length path that contains
he link lj such that src�pj��Np and dst�pj��Nm. In-
ex the link lj so that len�p1�� len�p2�� len�p3�� . . .
len�p2L�. Claim that �p1 ,p2 ,p3 , . . . ,pj� do not contain

j+1.
Assume that the claim is true for j=k, where k�2.

uppose there exists an i� �1,k� such that pi contains
k+1. It is worth noting that src�li�=src�pi� if src�li�

Np and dst�li�=dst�pi� if dst�li��Nm, as pi is the
inimum-length path. Remember that the necessary

ondition in Theorem 1 is assumed to be satisfied. The
roof is divided into four cases, according to the prop-
rty of the nodes src�li� and src�lk+1�.
Case 1: Both src�li� and src�lk+1� are elements in Np.

here should be no monitoring module along the sub-
ath from dst�li� to src�lk+1� of pi; otherwise, len�pi� is
ot minimum. In particular, the node dst�li��Np by
he necessary condition stated in Theorem 1. The sub-
ath of pi, from node dst�li� to the node dst�pi� is de-
oted ps, which contains lk+1. It is true that len�pi�
len�pk+1�� len�ps� by definition. However, len�ps�
len�pi�. This leads to a contradiction.
Case 2: The node src�li��Np while src�lk+1��Nm.

herefore, path pi can be shortened by removing the
ubsequent links after src�lk+1�. This contradicts that
en�pi� is minimum.

Case 3: The node src�li��Nm while src�lk+1��Np. If
k+1 is visited before li in pi, the subpath of pi, from
rc�lk+1� to dst�li� is denoted pbef and contains lk+1.
hen len�pi�� len�pk+1�� len�pbef� by definition. How-
ver, len�pbef�� len�pi�. This leads to a contradiction.
n contrast, if lk+1 is visited after li, the subpath of pi,
rom src�lk+1� to dst�pi�, is denoted paft and contains
k+1. Similarly, len�pi�� len�pk+1�� len�paft� by defini-
ion. However, len�paft�� len�pi�. This leads to a con-
radiction.

Case 4: Both src�li� and src�lk+1� are elements in Nm.
f lk+1 is visited before li in pi, the subpath of pi, from
rc�pi� to src�li�, is denoted pbef and contains lk+1. Then
en�pi�� len�pk+1�� len�pbef� by definition. However,
en�pbef�� len�pi�. This leads to a contradiction. In con-
rast, if lk+1 is visited after li, the subpath of pi from
rc�pi� to src�lk+1� is denoted ps and contains li. But
hen len�ps�� len�pi�, which is a contradiction. This
roves the claim.
Suppose a set of probing channels is injected along

he paths �p1 ,p2 ,p3 , . . . ,p2L�. The �k+1�th component
f the first k row vectors in the corresponding matrix
should be 0, as all the paths �p1 ,p2 ,p3 , . . . ,pk� do not

ontain lk+1. On the other hand, the �k+1�th compo-
ent of the �k+1�th row vector is 1 by definition. By

nduction, all the row vectors in Y are linearly inde-
endent, which implies that Y is invertible and the set
of paths gives a probing scheme. This completes the

roof.
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IV. FAULT LOCALIZATION IN NETWORKS WITHOUT A
ROUTING NODE

Fault localization [17–19] is a special kind of perfor-
mance monitoring. The performance of a network
component has only two levels: “on” or “off.” It is natu-
ral to consider a channel as off whenever a link along
the channel path is off. For both channels and links,
this performance information can be represented as a
binary failure indicator: failure indicator=1 means
off, while failure indicator=0 means on. An adaptive
technique for fault diagnosis using probes has been
presented [18]. In [18], probes are established sequen-
tially, and the paths of the probes depend on the re-
sults of the already established probes. The total num-
ber of probes used asymptotically achieves the
information theoretical limit of retrieving all the sta-
tuses of the links. However, the technique assumes
that a probe can originate and terminate at any loca-
tion. In the worst case, all the nodes in the network
need to have monitors. Another approach to fault lo-
calization was advocated in [19]. In [19] only a few
nodes in the network are equipped with monitors, re-
ferred to as monitoring locations. The failures may be
uniquely localized by using monitoring paths and
monitoring cycles. The total number of failures that
can be localized is bounded by a number chosen by the
network operator. The higher the bound, the more
monitoring paths and cycles are required; thus more
nodes should be equipped with monitors. No localiza-
tion ability is guaranteed if the total number of fail-
ures exceeds the bound. The probing scheme dis-
cussed in the present paper installs monitoring
modules at some determined nodes. It can locate at
least one fault even if multiple faults occur, and sub-
sequently all the other faults can be identified itera-
tively.

The failure indicators of probing channels and the

failure indicators of links are related by logical OR in-
tead of addition, which makes the proposed probing
cheme unable to retrieve the fault indicators of all
inks. However, Theorem 5 below shows that at least
ne fault can be located if the minimum-length ap-
roach in Theorem 4 is applied for probing channels.
his is because the corresponding matrix Y is trian-
ular. Note that Theorem 4 applies only to the net-
orks without a routing node; the fault localization
bility is thus restricted to networks without a rout-
ng node.

Theorem 5. If the minimum-length path approach
n Theorem 4 is used for probing channels, at least one
ault can be located even if multiple faults occur.

Proof. The impairment variable xj is interpreted as
he fault indictor of the link lj. That is, xj=1 if there is
ault in the link lj; otherwise, xj=0. Similarly, the fault
ndicator yj for the jth probing channel along the path
j is set to 0 if there is no fault along the path pj; oth-
rwise, it is set to 1. Let y= �y1 y2 y3 . . .y2L�T. Without
oss of generality, index the paths pj, for j� �1,2L�, ac-
ording to their length as in Theorem 4. Let W be the
ndex set such that the wth components in y=1 if and
nly if w�W. Let s be the smallest number in W.
ince s�W, ys=1; there should be at least one fault
long path ps. Since ps does not contain any link with
n index larger than s, as shown in Theorem 4, the po-
ential failed links should have indices t�s. On the
ther hand, yt=1, as pt contains lt. Since s is the small-
st number in W, t�s which concludes that t=s. The
roof is complete.
Theorem 5 induces a fault localization algorithm.
pon receiving the failure indicator vector y, the

ailed link with the smallest index can be located by
heorem 5. Any other failed link, if it exists, can be

ocated iteratively after the repair of the located fault.
he following table compares the fault location
chemes in [18,19] and this paper.
ome

ault
iled
e
he
t.
Fault Location
Scheme Ref. [18] Ref. [19] This Paper

Monitoring
module location

Not fixed; may be installed
in all nodes.

Fixed; installed in only
some determined nodes.

Fixed; installed in only s

determined nodes.
Number of
probing
channels

Depends on the failure
probability; asymptotically
approaches the information
theoretic limit.

About 2 probing
channels per link

About 1 probing channel
per link

Fault location
ability

Can locate all faults Can locate fault only up to a number
designed by the
network operator. The
larger the number, the
more monitoring modules. If the
number of faults exceeds the number,
no guarantee of localization ability.

Can locate at least one f
occurrence. Any other fa
links, if they exist, can b
located iteratively after t
repair of the located faul
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V. CONCLUSION

Although it is uncertain how much monitoring is
needed, OPM is clearly indispensable for future high-
capacity transparent mesh optical networks. All-
optical reconfigurable mesh networks impose great
challenges for OPM because of the signal transpar-
ency and nonstatic configuration for different chan-
nels. In the existing OPM schemes, performance
monitoring is always done on a channel basis. The
channel qualities are monitored separately. The corre-
lation in channel quality between different channels
is ignored. These performance monitoring schemes
are usually applied to measure the existing data chan-
nels for adaptive compensation of degraded signal
quality. However, data channels are set up and torn
off dynamically in reconfigurable networks. The path
of data channels changes from time to time. It is ben-
eficial to have an estimation of the quality of a path
before a data channel is established along it. This
quality estimation provides some network manage-
ment functions, such as channel setup, control, and
optimization. Network operators can also regard the
estimations as a metric for path computation.

In this paper, a novel algebraic approach provides a
systematic method for OPM in reconfigurable all-
optical networks. The proposed approach provides an
efficient way to derive the accumulated impairment of
all possible paths between any two communicating
nodes. The channel quality can be estimated before it
is established. In addition, the end-to-end perfor-
mance, subpaths of any data channel paths can also
be monitored. On the other hand, if it is not necessary
to estimate the quality of all paths, the redundant
paths can be excluded, which may reduce the number
of monitoring modules required. By using the correla-
tion in the channel quality between different chan-
nels, the total number of channels injected for moni-
toring is always bounded by the number of links in the
network, which is much less than the number of all
possible paths. Furthermore, the bounds on the num-
ber of monitoring modules required are derived, and

Fig. 7. Left, ring subnetwork in a two-node-connected network.
Right, a Eulerian cycle in a two-link-connected network. If na�nb,
the Eulerian cycle is a ring subnetwork.
he corresponding monitoring scheme is proposed. For
special network in which all nodes can originate and

erminate channels, a monitoring scheme that
chieves the fundamental limit on the number of
onitoring modules is introduced. The monitoring

cheme proposed for this kind of network can also be
sed to locate faults. At least one fault can be located
ven if multiple faults occur. Any other failed links, if
hey exist, can be located iteratively after the repair of
he located fault.

APPENDIX A

Theorem 2. When H is a proper two-node-
onnected network, a probing scheme exists if there is
node in Np�Nm. Otherwise, H contains cut nodes.

uppose H is decomposed into maximal two-node-
onnected subnetworks. Consider the two-node-
onnected subnetworks that contain exactly one cut
ode of the whole network H. If there is a node in
p�Nm in each of these subnetworks, a probing

cheme exists.
Proof. The nodes in Np�Nm are called “fully

quipped nodes.” The proof is divided into four cases.
he first case considers short segments in a proper

wo-node-connected network. The second and third
ases consider long segments in a proper two-node-
onnected network. The last case artificially creates a
roper two-node-connected network in a general net-
ork with cut nodes so that every short segment and

ong segment can be solved by the methods in the first
hree cases.

Case 1. Suppose H is a proper two-node-connected
etwork and the accumulated impairment z of a short
egment, i.e., a single link l, has to be derived. Let m
enote the fully equipped node. Refer to Fig. 7. There
hould be a ring subnetwork R containing the nodes
rc�l� and dst�l�, as the whole network is two-node
onnected. Suppose m is not in R. As a two-node-
onnected network, there are two node-disjoint paths
a and pb from m to src�l�. Let the first node [in the
irection from m to src�l�] in which pa and pb meet R
e na and nb, respectively. Let pc and pd be the sub-
ath of pa and pb from m to na and nb, respectively.
ince the path pc and pd are node disjoint, na�nb.
ithout loss of generality, let pr be the subpath, from

a to src�l� to dst�l� to nb of R. The path p=pc+pr+pd�
orms a ring subnetwork that contains the nodes m,
rc�l�, and dst�l�. Therefore, there is always a ring
ubnetwork containing all the nodes m, src�l�, and
st�l�. The cyclic path along the ring subnetwork from

to itself is sufficient to derive the impairment vari-
ble of the link l by Lemma 1.
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Case 2. Suppose H is a proper two-node-connected
network and that the accumulated impairment z of a
long segment has to be derived. Designate the fully
equipped node as m. Let the long segment be the path
p=u→v→w, where u and w are nodes in N while v is
a supernode in S. Similar to Case 1, there should be a
ring subnetwork R containing path p, as the whole
network is two-node-connected. If m is contained in R,
the accumulated impairment z can be derived by
Lemma 1 along the cyclic path in R. The next case
considers the situation that the node m is not included
in any ring subnetwork.

Case 3. Suppose H is a proper two-node-connected
network and that the accumulated impairment z of a
long segment has to be derived. Recall the notation in
Case 2. Suppose there is no ring subnetwork that con-
tains the fully equipped node m and the path p. But
there should be a ring subnetwork R that contains the
path p, as the whole network is two-node connected.
Refer to Fig. 8 (left). As a two-node-connected net-
work, there are two node-disjoint paths, labeled pv
and pg, from m to u. Let the first node [in the direction
from m to src�l�] in which pa and pb meet R be v and g.
Let pv and pg be the subpath of pa and pb from m to v
and g, respectively. Note that one of the paths pa and
pb, assumed to be pa in the analysis, should meet the
ring subnetwork R at v; otherwise there is a ring sub-
network that contains both the node m and the path
p. Define pw and pu as the subpath from the node w to
the node g and the subpath from the node g to the
node u, along the cyclic path in R, respectively. Case 3
is further divided into three cases.

Case 3a. Suppose the node u�Np; the path p+pw
+pg� is a path that suffices to derive z by Lemma 1.

Case 3b. Suppose u�Nm while w�Np. Let lu and lw
be the link from u to v and v to w, and xu and xw be the
impairment variables for them, respectively. Then im-
pairment variable z=xu+xw. Let zv �zv�� be the accumu-
lated impairment along path pv �pv��. Consider the five
paths p1=pg+pu+ lu+pv�, p2=pv+ lu� +pu� +pg�, p3=pg+pw�
+ lw� +pv�, p4=pv+ lw+pw+pg�, and p5=p�+pu� +pg�. Path
p1 suffices to derive xu+zv� by Lemma 1. Similarly,
path p2 suffices to derive xu� +zv, path p3 suffices to de-
rive xw� +zv�, path p4 suffices to derive xw+zv, and path
p suffices to derive x� +x� . The accumulated impair-

Fig. 8. Left, a figure for the proof of the Case 3 of Theorem 2. Im-
portant nodes and paths in the proof are labeled. Right, in the proof
of Case 4 of Theorem 2, the merged node m can be restored into the
two fully equipped nodes ma and mb.
5 u w
ent z=xu+xw= �xu+zv��+ �xw+zv�− �xw� +zv��− �xu� +zv�
�xu� +xw� � can then be derived.
Case 3c. Suppose both node u and w are elements in
m. Recall the notation in Case 3b. Paths p1, p2, p3,

nd p4 let us derive xu+zv�, xu� +zv, xw� +zv�, and xw+zv,
espectively. However, path p5 may not be a valid path
or a probing channel, as w may not be installed with
robing. The accumulated impairment along p�, i.e.,
u� +xw� , is derived in another way. Since path p is a
ubpath of some paths of interest in Q, there should
e a path pt, between two terminal nodes, that con-
ains the path p, according to the property of the
aths of interest in Q. Refer to Fig. 9(a). Let t1 and t2
enote the nodes of src�pt� and dst�pt�, respectively.
onsider the path pt as pbef+p+paft. Note that path
bef is a null path if the node u is a terminal node.
imilarly, path paft is null if the node w is a terminal
ode. As a two-node-connected network, there should
e two node-disjoint paths from m to u. The two paths
hould not meet pt at the same node. Therefore, one of
hese two paths meets pt as a node, labeled f, which is
ot node v. Let pf denote the path from m to f, along
he path from m to u, which is mentioned above. If f is

node in paft or f=w, the path pf concatenated with
he path from f to t1 along the reverse path pt� suffices
o derive the accumulated impairment along p�, i.e.,
u� +xw� . Otherwise [refer to Fig. 9(b)], if f is a node in
bef or f=u, the path pf concatenated with the path
rom f to t2 suffices to derive accumulated impairment
long p directly by Lemma 1.
Case 4. The network H contains cut nodes. Consider

hat the network H is decomposed into maximal two-
ode-connected subnetworks. The interconnection be-
ween the maximal two-node-connected networks is
ike a tree network. To see that, create a node for each
ut node and create a node for each maximal two-
ode-connected subnetwork. Let A and B be the set of
odes created from the cut nodes and the maximal
wo-node-connected subnetworks, respectively. Add a
ink between a node in A and a node in B if and only if
he cut node that comes from A is a node in the corre-
ponding maximal two-node-connected subnetwork
hat comes from B. Let T denote the resultant net-
ork. There is no ring subnetwork in T; otherwise,

his ring subnetwork induces a ring of maximal two-
ode-connected subnetworks. This ring of maximal
wo-node-connected subnetworks forms a larger two-
ode-connected subnetwork, which contradicts the

act that each two-node-connected subnetwork is
aximal. Therefore, T is a tree network.
The maximal two-node-connected subnetworks con-

ain exactly one cut node of the whole network H if
nd only if they come from the leave nodes in T. These
ubnetworks are called “leave subnetworks.” To make
se of the analysis in the first three cases of the proof,
wo fully equipped nodes in two separate leave sub-
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networks are merged to artificially create two-node-
connected subnetworks. Suppose two fully equipped
nodes, called ma and mb, in two separate leave subnet-
works are merged into one node, called m. This in-
duces a ring subnetwork in T. Equivalently, the merg-
ing induces a ring of two-node-connected subnetworks
that are interconnected through cut nodes and the
node m. This ring of subnetwork is a two-node-
connected subnetwork as a whole. Note that any short
segment or long segment can be included in an artifi-
cial two-node-connected subnetwork if the fully
equipped nodes to be emerged are chosen properly.
Then the segments can be solved by the analysis in
the first three cases. The merged node m plays the
role of the fully equipped node in the three cases of the
recent discussion. Refer to Fig. 8 (right); restoring m
into ma and mb does not violate the existence of the
solution for both short and long segments. The proof is
completed.

Example. Figure 10 shows a sample network. The

Fig. 9. (a) Paths to derive the accumulated impairment in the path
p�. (b) The accumulated impairment along the long segment p can
be derived directly by Lemma 1.

Fig. 10. Sample network to illustrate the application of Theorem
2.
ode m�Np�Nm. Other terminal nodes are labeled t
ith indices, while routing nodes are labeled r with

ndices. Figure 10 becomes Fig. 11 after the contrac-
ion of links between two routing nodes. The routing
odes r1, r2, and r3 are contracted into a node r. Sup-
ose that all possible paths between terminal nodes
re in Q. There are a total of 4 short segments and 12
ong segments that have to be solved. Obviously, the
etwork is two-node connected; thus the fully
quipped node m suffices to solve the long and short
egments.
Long segments are solved first. The following set of

aths suffices to solve the long segments involving the
ontracted routing node r:

3 + z8:t1 → r → m,

7 + z4:m → r → t1 → t2 → r4 → m

and t1 → t2 → r4 → m �by Lemma 1�,

7 + z5:m → r4 → t3,

6 + z8:t4 → r4 → t3 → t2 → r → m

and t4 → r4 → t3 → t2 �by Lemma 1�,

3 + z5:t1 → r → t2,

6 + z4 = �z6 + z8� + �z7 + z4� − �z3 + z8� − �z3 + z8�

+ �z3 + z5� �by Case 3b of Theorem 2�.

he following set of path suffices to solve the long seg-
ents involving the routing node r4:

18 + z19:t4 → r4 → m,

20 + z17:m → r4 → t4 → t1 → r → m

and t → t → r → m �by Lemma 1�,

ig. 11. Routing nodes contracted by contracting links between
wo routing nodes.
4 1
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z20 + z16:m → r4 → t2,

z15 + z19:t1 → r → t2 → t3 → r4 → m,

and t1 → r → t2 → t3 �by Lemma 1�,

z18 + z16:t4 → r4 → t3,

z15 + z17 = �z15 + z19� + �z20 + z17� − �z18 + z19� − �z20 + z16�

+ �z18 + z16� �by Case 3b of Theorem 2�.

After all long segments are solved, the accumulated
impairment induced in them can be subtracted di-
rectly from the OPM results of the paths that involve
them. This, equivalently, contracts all the long seg-
ments. In this example, the contraction of all long seg-
ments eventually gives a network without routing
nodes. Therefore, the short segments can be solved by
the minimum-length path approach stated in Theo-
rem 4:

x1:t4 → t1 → r → t2 �by the minimum-length

path approach in Theorem 4�,

x2:t1 → t4 → r4 → t3 �by the minimum-length

path approach in Theorem 4�,

x13:t1 → r → t2 → t3 �by the minimum-length

path approach in Theorem 4�,

x14:t2 → r4 → t3 → t2 �by the minimum-length

path approach in Theorem 4�.

Theorem 3. When G is a two-link-connected net-
work, a probing scheme exists if there is a node in
Np�Nm. Otherwise, suppose that the network G is
decomposed into maximal two-link-connected subnet-
works. Consider the two-link-connected subnetworks
that are attached to exactly one bridge of the whole
network. If there is a node in Np�Nm in each of these
subnetworks, a probing scheme exists.

Proof. The nodes in Np�Nm are called “fully

Fig. 12. Sample network to illustrate application of Theorems 3
quipped nodes.” The proof is divided into two cases.
he operator � denotes the concatenation operator of
aths.
Case 1. The network G is two-link-connected. Let m

enote the fully equipped node in G. Refer to Fig. 7
left) (proof of Theorem 2). There should be a ring sub-
etwork R that contains src�l� and dst�l�, as the whole
etwork is two-link connected. If m is contained in R,
he cyclic path from the node m to itself along the ring

is sufficient to derive the impairment variable in
he link l by Lemma 1. Suppose m is not in R. As a
wo-link-connected network, there are two link-
isjoint paths pa and pb from m to src�l�. Let the first
ode [in the direction from m to src�l�] where pa and
b meet R be na and nb, respectively. Let pc and pd be
he subpath of pa and pb from m to na and nb, respec-
ively. Without loss of generality, let pr be the subpath
rom na to src�l� to dst�l� to nb of R. The path p=pc
pr+pd� forms an Eulerian cycle subnetwork that con-

ains m, src�l�, and dst�l�. This Eulerian path, from
he node m to itself, is sufficient to derive the impair-
ent variable of the link l by Lemma 1.
Case 2. The network G contains bridges. Consider

hat network G is decomposed into maximal two-link-
onnected networks and bridges. As mentioned in the
iscussion of the decomposition, the contraction of
hese maximal two-link-connected networks gives a
ree network, denoted T. The maximal two-link-
onnected subnetworks are connected to exactly one
ridge of the whole network if and only if they are con-
racted into the leave nodes in T. These subnetworks
re called “leave subnetworks.”
To make use of the analysis in the first case of the

roof, virtual links are inserted to the network G to
rtificially create two-link-connected subnetworks.
uppose a virtual link is inserted between two fully
quipped nodes, called ma and mb, in two separate
eave subnetworks. This virtual link induces a ring
ubnetwork in T. Equivalently, the virtual link in-
uces a ring of two-link-connected subnetworks that
re interconnected by bridges and the virtual link.
his ring of subnetworks is a two-link-connected net-
ork as a whole. Note that any link in the network G

an be included in the artificial two-link-connected
etwork if the two leave subnetworks are properly
hosen. Denote a link, except the virtual link, in the
rtificial two-link-connected network by l. From Case
, there is a ring subnetwork or an Eulerian cycle con-
aining the node ma, src�l�, and dst�l�. Either one of
he situations gives a cyclic path that is sufficient to
erive the impairment variable of the link l by Lemma
. If the cyclic path, along the ring subnetwork or an
ulerian cycle, does not contain the virtual link in-
erted, the impairment variable can be derived in the
riginal network without the virtual link. Otherwise,
he removal of the inserted virtual link disconnects
and 4.
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the cyclic path into a path from the node ma to mb but
still contains the link l. This path is also sufficient to
derive the impairment variable of l by Lemma 1. The
proof is complete.

Example. Figure 12 shows a sample network. The
node m�Np�Nm. There are total of 22 short seg-
ments that have to be solved. Obviously, the network
is two-link-connected; thus the fully equipped node m
suffices to solve all the short segments. Applying
Theorem 4, the minimum-length paths for each link
are listed below. The paths on the right are the
minimum-length path that the link associated with
the impairment variables on the left:

x1:n8 → n1 → n2 → n3 → m,

x2:n1 → n8 → n7 → m,

x3:n1 → n2 → n3 → m,

x4:n2 → n1 → n8 → n7 → m,

x5:n2 → n3 → m,

x6:n3 → n2 → n1 → n8 → n7 → m,

x7:n2 → n4 → n3 → m,

x8:n4 → n2 → n3 → m,

x9:n3 → n4 → n5 → n6 → n7 → m,

x10:n4 → n3 → m,

x11:n4 → n5 → n6 → n7 → m,

x12:n5 → n4 → n3 → m,

x13:n5 → n6 → n7 → m,

x14:n6 → n5 → n4 → n3 → m,

x15:n6 → n7 → m,

x16:n7 → n6 → n5 → n4 → n3 → m,

x17:n7 → n8 → n1 → n2 → n3 → m,

x18:n8 → n7 → m,

x19:n7 → m,

x20:m → n7 → n8 → n1 → n2 → n3 → m,

x :m → n → n → n → n → n → m,
21 3 4 5 6 7
22:n3 → m.

ACKNOWLEDGMENTS

he authors thank D. C. Kilper, Yonggong Wen, and
henchang Xie for their valuable comments. This
ork is supported in part by Hong Kong Government
RF 411006.

REFERENCES

[1] D. C. Kilper, R. Bach, D. J. Blumenthal, D. Einstein, T.
Landolsi, L. Ostar, M. Preiss, and A. E. Willner, “Optical per-
formance monitoring,” J. Lightwave Technol., vol. 22, pp. 294–
304, 2004.

[2] S. L. Woodward, “Monitors to ensure the performance of pho-
tonic networks,” in Optical Fiber Communication Conf. and
Exposition and Nat. Fiber Optic Engineers Conf., OSA Techni-
cal Digest Series (CD), Washington, DC: Optical Society of
America, 2007, paper OMM1.

[3] L. Meflah, B. Thomsen, J. Mitchell, P. Bayvel, G. Lehmann, S.
Santoni, and B. Bollenz, “Advanced optical performance moni-
toring for dynamically reconfigurable networks,” in Proc. Conf.
Networks and Optical Communication (NOC), Calgary,
Canada: International Association of Science and Technology
for Development, 2005, pp. 554.

[4] L. K. Chen, M. H. Cheung, C. K. Chan, “From optical perfor-
mance monitoring to optical network management: research
progress and challenges,” presented at the 3rd Int. Conf. Opti-
cal Communications and Networks (ICOCN), Hong Kong, Nov.
30–Dec. 1, 2004.

[5] J. H. Lee, D. K. Jung, C. H. Kim, and Y. C. Chung, “OSNR
monitoring technique using polarization-nulling method,”
IEEE Photon. Technol. Lett., vol. 13, pp. 88–90, 2001.

[6] M. Petersson, H. Sunnerud, M. Karlsson, and B. E. Olsson,
“Performance monitoring in optical networks using Stokes pa-
rameters,” IEEE Photon. Technol. Lett., vol. 16, pp. 686–688,
2004.

[7] G. W. Lu and L. K. Chen, “Enhancing the monitoring sensitiv-
ity of DOP-based OSNR monitors in high OSNR region using
off-center narrow-band optical filtering,” Opt. Express, vol. 15,
pp. 823–828, 2007.

[8] Y. C. Ku, C. K. Chan, and L. K. Chen,“ A robust OSNR moni-
toring scheme using phase modulator embedded fiber loop mir-
ror,” Opt. Lett., vol. 32, pp. 1752–1754, 2007.

[9] X. Liu, Y. H. Kao, S. Chandrasekhar, I. Kang, S. Cabot, and L.
L. Buhl, “OSNR monitoring method for OOK and DPSK based
on optical delay interferometer,” IEEE Photon. Technol. Lett.,
vol. 19, pp. 1172–1174, 2007.

[10] Z. Pan, Q. Yu, Y. Xie, S. A. Havstad, A. E. Willner, D. S. Star-
odubov, and J. Feinberg, “Chromatic dispersion monitoring
and automated compensation for NRZ and RZ data using clock
regeneration and fading without adding signaling,” in Optical
Fiber Communication Conf., 2001 OSA Technical Digest Se-
ries, Washington, DC: Optical Society of America, 2001, paper
WH5.

[11] G. W. Lu, K. T. Tsai, W. I. Way, and L. K. Chen, “Experimental
demonstration of resolution-enhanced residual chromatic-
dispersion monitoring using half-bit delay-interferometer fil-
tering for RZ-OOK system,” presented at 32nd European Conf.
Optical Communication (ECOC 2006), Cannes, France, Sept.
24–28, 2006, paper We3.P.67.

[12] Y. Ku, C. Chan, and L. Chan, “Chromatic dispersion monitor-
ing technique using birefringent fiber loop,” in Optical Fiber
Communication Conf. and Exposition and Nat. Fiber Optic En-
gineers Conf., Technical Digest (CD), Washington, DC: Optical
Society of America, 2006, paper OFN2.



j
U
c
2
a
i
o
K
i
t
t
a

S.-T. Ho and L.-K. Chen VOL. 1, NO. 1 /JUNE 2009/J. OPT. COMMUN. NETW. 141
[13] Y. K. Lizé, J. Yang, L. C. Christen, X. Wu, S. Nuccio, T. Wu, A.
E. Willner, R. Kashyap, and F. Séguin, “Simultaneous and in-
dependent monitoring of OSNR, chromatic and polarization
mode dispersion for NRZ-OOK, DPSK and duobinary,” in Op-
tical Fiber Communication Conf. and Exposition and Nat. Fi-
ber Optic Engineers Conf., OSA Technical Digest Series (CD),
Washington, DC: Optical Society of America, 2007, paper
OThN2.

[14] G. W. Lu, M. H. Cheung, L. K. Chen, and C. K. Chan, “Simul-
taneous PMD and OSNR monitoring by enhanced RF spectral
dip analysis assisted with a local large-DGD element,” IEEE
Photon. Technol. Lett., vol. 17, pp. 2790–2792, 2005.

[15] Y. Huang, J. P. Heritage, and B. Mukherjee, “Connection pro-
visioning with transmission impairment consideration in opti-
cal WDM networks with high-speed channels,” J. Lightwave
Technol., vol. 23, pp. 982–993, 2005.

[16] G. R. Walker, N. G. Walker, R. C. Steele, M. J. Creaner, and M.
C. Brain, “Erbium-doped fiber amplifier cascade for multichan-
nel coherent optical transmission,” J. Lightwave Technol., vol.
9, pp. 182–193, 1991.

[17] C. Mas, I. Tomkos, and O. K. Tonguz, “Failure location algo-
rithm for transparent optical networks,” IEEE J. Sel. Areas
Commun., vol. 23, pp. 1508–1519, 2005.

[18] Y. Wen, W. S. Chan, and L. Zheng, “Efficient fault-diagnosis al-
gorithms for all-optical WDM networks with probabilistic link
failures,” J. Lightwave Technol., vol. 23, pp. 3358–3371, 2005.

[19] S. Ahuja, S. Ramasubramanian, and M. Krunz, “SRLG failure
localization in all-optical networks using monitoring cycles and
paths,” in IEEE INFOCOM 2008. 27th Conf. Computer Com-
munications, IEEE, 2008, pp. 700–708.

S.-T. Ho received the B.S. and M.Phil. de-
grees from The Chinese University of Hong
Kong in 1999 and 2003, respectively. Both
were in information engineering. He is cur-
rently a Ph.D. post-candidate at The Chi-
nese University of Hong Kong. His research
interests include optical communication,
optical networking, switch architectures,
network coding, and information theory.
L.-K. Chen received the B.S. degree from
National Taiwan University, Taipei, in 1983
and the M.S. and Ph.D. degrees from Co-
lumbia University, New York, in 1987 and
1992, respectively, all in electrical engineer-
ing. He worked at Jerrold Communications,
General Instruments (GI), USA, in 1990–
1991 and engaged in research on linear
lightwave video distribution systems, with
contributions on the distortion reduction
schemes for various optical components. He

oined the Department of Information Engineering, The Chinese
niversity of Hong Kong and established the Lightwave Communi-

ations Laboratory in 1992. He was the Head of the Department in
004–2006. His current research interests include broadband local
ccess networks, photonic signal processing, performance monitor-
ng of optical networks, and bio-photonics. He is grateful that most
f the projects are supported by the research grants of the Hong
ong SAR government. He has published more than 200 papers in

nternational conferences and journals, primarily in the field of op-
ical communications. Professor Chen is a member of the IEEE Pho-
onics Society, the IEEE Communications Society, and OSA. He is
n Associate Editor of IEEE Photonics Technology Letters.


