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Analysis of Homodyne Crosstalk in Optical
Networks Using Gram–Charlier Series

Keang-Po Ho,Member, IEEE

Abstract—Homodyne crosstalk with the same wavelength as
the signal causes severe system performance degradation in
optical networks by beating with the desired signal. Gaussian
approximation is found to overestimate the system degradation.
A correction to Gaussian approximation, Gram–Charlier series
is used to analyze homodyne crosstalk. Both bit error rate
(BER) and power penalty are calculated for multiple homodyne
interferers.

Index Terms—Crosstalk interference, homodyne crosstalk, op-
tical networks, wavelength division multiplexing (WDM) systems.

I. INTRODUCTION

M ULTIWAVELENGTH optical networks will be an es-
sential technology for the future information infrastruc-

ture. Wavelength division multiplexing (WDM) is used in
optical networks to fully utilize the bandwidth of a single-
mode optical fiber. In optical networks, optical signal add–drop
is performed by wavelength routers. A fundamental difficulty
of the wavelength router is homodyne crosstalk from neighbor-
ing input ports or upstream nodes, causing severe degradation
in system performance. Homodyne crosstalk has identical or
very close wavelength to that of the signal, is difficult to
be eliminated by filtering, beats with the desire signal and
generates a new kind of noise at the receiver [1]–[18].

Even for a single interferer, previous analysis of homodyne
crosstalk was largely based on Gaussian approximation [1],
[5]–[8], though there were reports and evidences that this
assumption is incorrect [9]–[18]. Representing a worst-case
assumption and serving well for conservative system design
[5], [7], [11], [13]–[18], the Gaussian approximation is only
valid for a large number of more or less the same intensity
and statistically independent interferers [5], [8]–[10]. There-
fore, a non-Gaussian model may better estimate the system
perfomance [9]–[17]. Furthermore, a non-Gaussian model can
be used to verify the condition of the validity of the Gaussian
approximation.

Non-Gaussian model had been developed for a single in-
terferer by series expansion [13]–[14] and for many interfers
by modified Chernoff bound [9], saddle-point approximation
[15]–[16], and numerical integration or simulation [10]–[12],
[17]. However, most of the methods of [10]–[12], [15]–[17]
require complicated numerical calculation to evaluate the
system performance. The main contribution of this paper is
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Fig. 1. Example of an optical network configuration that may induce homo-
dyne crosstalk interference.

the derivation of an analytical series expansion based bit error
rate (BER) expression for multiple homodyne interferers. The
coefficients of the series can be evaluated by popular software
or algorithmically.

Here, Gram–Charlier series is used as a correction to the
Gaussian approximation for homodyne crosstalk having mul-
tiple interferers. The Gram–Charlier series, may be considered
as a correction of Gaussian approximation, expresses an arbi-
trary probability density function as an infinite series whose
leading term is a Gaussian distribution. The Gram–Charlier se-
ries has been used to evaluate the performance of optical trans-
mission systems [19], [20]. The advantage of Gram–Charlier
series is that all series coefficient can be evaluated from the
moments of the random variable [21].

The remaining parts of this paper will discuss the general
property of homodyne crosstalk, Gram–Charlier series of
homodyne crosstalk, and also present some numerical results.

II. HOMODYNE CROSSTALK

Homodyne crosstalk may be originated by many different
sources. Fig. 1 shows a configuration of an optical network
that may induce homodyne crosstalk with similar or identical
wavelength to the signal wavelength. While the channel at
wavelength at the input of wavelength router 1 should not
appear at the input of wavelength router 2, due to insufficient
crosstalk rejection in router 1, small amount of crosstalk
appears at the input of wavelength router 2 as homodyne
crosstalk. Alternatively, two input signals having the same
wavelength may appear at different input ports of the same
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wavelength router (router 2). There is no homodyne crosstalk
in ideal case because two signals are routed to different output
ports. However, any leaking or insufficient isolation may
induce homodyne crosstalk. Those homodyne crosstalks beat
with the signal and severely degrade the system performance
[1]–[18].

The electrical field intensity of the desired optical signal is
assumed to be , where is the
strength of the signal electric field, is the angular frequency
of the optical signal, is the random phase due to laser
phase fluctuation, is a random process depending
on whether ZERO or ONE is transmitted at time. The
small homodyne crosstalk originated from various sources are

where
are the crosstalk levels in optical power, are the

random phases due to laser phase fluctuation, and are
the data transmitted by crosstalk channels.

Without loss of generality, for a unit detector responsivity
and for the worst-case assumption of identical polarization of
signal and crosstalks, the photocurrent is

(1)

Ignoring the small terms in the order of , the overall receiver
noise in the photodetector is [1]–[7]

(2)

where , are the crosstalk ampli-
tudes, , are random
phases, and is the usual Gaussian noise in the receiver.
The probability density function (pdf) of has to be derived
to evaluate the BER. However, the pdf is difficult to find. In
this section, the characteristic function, the Fourier transform
of the pdf, of the noise is first studied. The pdf is evaluated in
later sections using the characteristic function.

When ZERO is transmitted by the signal channel, there is
no homodyne beating and . The pdf is the well-
known Gaussian distribution and the error probability can be
evaluated by the complementary error function.

When ONE is transmitted by the signal channel, homodyne
beating generates a total noise of

(3)

In each homodyne crosstalk beating, for a random phase of
, the pdf of is given by

for [5], [13], [17]–[18], [22] which
yields the characteristic function of , where is
the zero-order Bessel function of first-kind. For each individual
homodyne crosstalk, there is no homodyne beating for a prob-
ability of 1/2 when the crosstalk channel transmits ZERO. For
the other one-half probability for transmitting ONE, homodyne
crosstalk generates a beating noise of . Therefore,

the characteristic function of theth homodyne crosstalk
source, , is

(4)

All random phases are independent with each other, the
characteristic function of in (3) is the product of the
characteristic functions of all noise sources

(5)

where and are the variance and characteris-
tic function of the receiver Gaussian noise , respectively.

In the following section, the BER due to the summation
of homodyne crosstalk and Gaussian noise is evaluated ac-
cording to the characteristic function of the overall noise. The
Gram–Charlier series expansion of the characteristic function
is derived and the BER is evaluated accordingly.

III. GRAM–CHARLIER SERIES

Gram–Charlier series can be used to analyze multiple homo-
dyne interferers. Gram–Charlier series can be easily derived
from the characteristic function of the noise.

A. General Formula of Gram–Charlier Series

Gaussian approximation can be used to approximate the
homodyne crosstalk. In Gaussian approximation, the charac-
teristic function is approximated by

(6)

where

(7)

is the total variance of homodyne crosstalk. However, the
drawback of using Gaussian approximation is well-known
[13]–[18]. Better approximation can be achieved using a
particular series expansion called Gram–Charlier series in
which

(8)

The leading term of this series is the characteristic function of
a zero-mean Gaussian density with variance of
which is the same as that in (6). Other terms can be used as
a correction to the Gaussian approximation.

Taking the inverse Fourier transform of , the pdf is

(9)
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where is a Hermitian
polynomial of order . The error probability or the cumulative
tail probability is

(10)

where is the detection threshold. Compared the Gaussian
approximation (6) with the Gram–Charlier series (8), the
leading term is the Gaussian approximation and the rest can
be considered as correction to the Gaussian approximation.

In theory, the detection threshold of the receiver can be
adjusted for optimal performance. In practice, the detection
threshold may be fixed at the middle of the “eye” by ampli-
tude estimation because no threshold is optimal for all noise
conditions. If the detection threshold is in the middle, the BER
of the system is equal to

(11)

where the first term is for a signal at ZERO level and
the second term is for a signal at ONE level, assuming
an extinction ratio of infinity, is the threshold
of detection and is the photocurrent at ONE level. The
corresponding Gaussian approximation is

(12)

In the noise expression of (3) to derive the BER, the
beating of homodyne crosstalk with each other is ignored.
The beating of homodyne crosstalk with signal generates
a crosstalk amplitude of . The beating of
homodyne crosstalk with each other (including self-beating)
generates a crosstalk amplitude of which is a factor
of smaller then signal and crosstalk beating. For an usual
crosstalk level less than 20 dB, the beating of homodyne
crosstalk with each other is at least 10 dB smaller than the
beating of homodyne crosstalk with signal and thus can be
ignored in the BER evaluation.

B. Gram–Charlier Series for Homodyne Crosstalks

The series coefficients are required in the
Gram–Charlier series. Compared the characteristic function
of (5) with the series expression (8), the coefficients can be
evaluated according to

(13)

First of all, we would like to find the series expansion of
the normalized function

(14)

TABLE I
THE COEFFICIENTS OFGRAM–CHARLIER SERIES

Using the series expansion of

and (15)

after some algebra

(16)

The first six nonzero coefficients of are shown in Table I.
All coefficients are small. The method of coefficient evaluation
of (16) is almost the same as that in [21].

The Gram–Charlier series of the characteristic function
is

(17)

The coefficients of can be found by comparing the left- and
right-hand side of (17). The first six nonzero coefficients of

are shown in Table I. All coefficients are function of the
crosstalk amplitudes and the coefficients .

C. Evaluation of Gram–Charlier Coefficients

Given the crosstalk levels from different channels or the
crosstalk amplitude of , the error probability
can be evaluated according to (10). In practice, using many
choices of powerful symbolic mathematical software,1 the
coefficients can be found by using Taylor expansion of
the right hand side of (13). Tens of those Gram–Charlier
series coefficients can be evaluated within minutes using most
symbolic mathematical software.

1The author has tried the series expansion in Mathematica and the Taylor
expansion in the symbolic Maple toolbox of Matlab. For ten homodyne
crosstalk sources, it takes about two minutes on a SUN Ultra 1 to an order of
50 for about 25 nonzero coefficients.



152 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 17, NO. 2, FEBRUARY 1999

If a symbolic mathematical software is not available,
a recursive algorithm can be used to evaluate all the
Gram–Charlier coefficients with the following steps:

1) find all coefficient using (16);
2) calculate the coefficient of one homodyne interferer by

;
3) recursively evaluate to homodyne interferers using

the following formula:

(18)

In the recursive formula of (18), the Gram–Charlier coef-
ficients of homodyne interferers are evaluated from the
Gram–Charlier coefficients of homodyne interferers and
the crosstalk amplitude of theth homodyne interferer. The
formula can be applied recursively to find the Gram–Charlier
coefficients of any number of homodyne interferers.

The required number of Gram–Charlier coefficients de-
pends very much on the ratio of crosstalk variance to
Gaussian noise variance . In general, the required number
of Gram–Charlier coefficients increases as the ratio
increases. Numerical results show that about 20 nonzero
coefficients are adequate in most numerical computations. In
general, because the pdf is close to Gaussian distribution as
the number of interferers increase, the required number of
Gram–Charlier coefficients decreases.

IV. NUMERICAL RESULTS

The extent of performance degradation due to homodyne
crosstalk depends very much on the number of crosstalk
interferers. Fig. 2 shows BER as a function of signal-to-
Gaussian-noise ratio, , for different number of crosstalk
interferers. The total signal-to-crosstalk ratio is assumed to be

25 dB and each crosstalk interferer is assumed to have the
same crosstalk amplitude. Gaussian approximation represents
the worst-case estimation that is valid when the number
of homodyne interferers increases. Gaussian approximation
has insignificant difference with the Gram–Charlier series
when the number of interferers is more than ten. However,
when the number of interferers is smaller, the Gaussian
approximation overestimates the BER with a large margin.
Fig. 2 also shows the theoretical results from [13] for one
interferer. Although Gram–Charlier series, as a correction
to Gaussian approximation, is considered least accurate for
single-interferer, negligible difference is found as compared
to [13].

Fig. 3 shows the power penalty as a function of crosstalk
level for different number of interferers. For many interferers,
the crosstalk amplitude of each interferer is assumed to be
identical for simplicity. The required SNR to achieve a BER
of 10 9 is without homodyne crosstalk. With
homodyne crosstalk, if the required SNR to achieve a BER
of 10 9 is , the power penalty is defined as .
Fig. 3 also shows that Gaussian approximation is a good model
for many interferers but not a good model for small number

Fig. 2. BER as a function of signal-to-Gaussian noise ratiod=�0 for a total
crosstalk level of�25 dB with different number of homodyne interferers
and Gaussian approximation.The dash-line curve is the single-interferer result
from [13].

Fig. 3. Power penalty as a function of crosstalk level for different number
of interferers and Gaussian approximation. The circles are power penalties
from exact analysis for single interferer [13].

of interferers. For example, Gaussian approximation provides
a power penalty of 3 dB at a crosstalk level of about23
dB but the accurate model shows a crosstalk level of about

17 dB for the same penalty. For the number of interferers
more than ten, the results from Gaussian approximation and
Gram–Charlier series are very close to each other. The results
from [13] for single interferer are also shown for comparison
for crosstalk levels of 30, 25, and 20 dB. The power
penalties provided by Gram–Charlier series are shown to have
insignificant difference with that from [13].

The Gram–Charlier series can also be used to study multiple
homodyne crosstalk sources having different crosstalk levels.
Fig. 4 shows BER as a function of SNR with four homo-
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Fig. 4. BER as a function of signal-to-Gaussian noise ratio,d=�0 for a total
crosstalk level of�25 dB. There are a total of four homodyne interferers
with different crosstalk levels.

dyne crosstalk sources in which three of them have identical
crosstalk level and one of them is dominated with 3, 6, and 10
dB larger crosstalk level than the other three interferers. For
a total crosstalk level of 25 dB, Fig. 4 also shows results
of one interferer and four equal interferers, all the same as
Fig. 2, for comparison. In practice, usually all interferers have
different crosstalk level and usually one or two of them may be
dominated. As shown in Fig. 4, if one of the crosstalk sources
become dominant crosstalk, the performance approaches that
of a single interferer. If the stronger crosstalk is only 3 dB
larger than the other three interferers are, the performance is
very close to that provided by equal crosstalk level.

From Figs. 2–4, Gaussian approximation is always the
worse-case approximation and may be used in practice for
a conservative system design. As shown in [5] by numerically
evaluating the pdf for multiple interferers, as the number
of interferers increases, by the central limit theorem, the
combined pdf approaches a Gaussian distribution provided
that the variances of individual interferer are more or less
the same. Figs. 2–3 show that the number of interferers must
be larger than about ten to render the validity of Gaussian
approximation. For a single interferer, from Figs. 2–3, the
Gram–Charlier series has insignificant difference with an exact
analysis in [13].

V. CONCLUSION

Optical networks may be seriously degraded by homodyne
crosstalk having the same wavelength as the signal. Usu-
ally used to evaluate system BER degraded by homodyne
crosstalk, Gaussian approximation overestimates the perfor-
mance degradation, especially when the number of homodyne
crosstalk sources is small. Gram–Charlier series, which may
be considered as a correction to Gaussian approximation,
is used to derive the probability density function and the

error probability for multiple homodyne interferers. Gaussian
approximation is very close to the Gram–Charlier series if
the system has more than ten homodyne crosstalk sources
having more or less the same crosstalk level. With multiple
homodyne crosstalk sources, the system performance may be
close to single interferer case if one of the homodyne crosstalk
sources is the dominant source.
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