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Abstract—The usable bandwidth of an optical filter is not only
limited by signal attenuation, but also the waveform distortion
when optical signal is passed through the edge of the filter. The
waveform distortion due to optical filtering is investigated with
the assumption of linearly chirped Gaussian pulse. While the
first-order optical filtering (linear slope in dB) does not induce
waveform distortion, second-order optical filtering induces pulse
distortion similar to fiber dispersion.

Index Terms—Filter distortion, optical filtering, wavelength-di-
vision multiplexing (WDM).

I. INTRODUCTION

OPTICAL networks using wavelength-division-mul-
tiplexed (WDM) technologies can fully utilize the

enormous bandwidth of a single-mode optical fiber. In WDM
systems, optical filter is an essential device to select the
channel, reject noise, attenuate channel power, etc. Optical
filtering can be found in WDM multiplexer/demultiplexer,
wavelength router, optical cross-connect, and other WDM
components. Optical filter is made by various technologies,
including array-waveguide grating [1], fiber Bragg grating [2],
multilayer interference filter [3], planar grating, Fabry–Perot
filter, acousticoptical filter, and others.

Usually, the WDM channel is located at the center of the
optical filter and the filter response is flat in that center region.
Considerable efforts are taken to design optical filter with two
contradictory criteria: a wide flat center region, but narrow
bandwidth [4]. To have a large crosstalk rejection ratio, the
usable bandwidth of the optical filter is usually limited and the
WDM channel may locate at a nonflat region of an optical filter
due to wavelength misalignment. To understand the usable
bandwidth of an optical filter, studies on distortion induced
by filters are required. While most previous works [4]–[7],
other than [8] and [9], focused on phase distortion, this paper
studies amplitude filtering induced waveform distortion (see
Fig. 1). Analytical formulas are derived for the special case
of linearly chirped Gaussian input pulse. The optical filter
transfer function (in dB scale) is modeled by Taylor series to
the second order. Like linear phase shift versus frequency [4]
induces only time delay, linear filter slope in dB scale induces
optical pulse gain/loss without waveform distortion. Similar to
fiber dispersion, the second-order filter distortion induces pulse
narrowing or broadening.
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Fig. 1. Distortion induced by optical filtering.

The remaining part of this paper will provide analytical
derivation and numerical results for waveform distortion due
to optical filtering.

II. A NALYSIS OF OPTICAL FILTERING-INDUCED

PULSE DISTORTION

In the analysis of pulse distortion due to fiber (or filter) dis-
persion, the propagation constant is usually expanded by
Taylor series to the second order, corresponding to group ve-
locity and dispersion coefficient. The analysis here assumes that
both the amplitude response (in dB) and phase response of the
optical filter can be expanded using Taylor series to the second
order. A close-form analytical result can be derived for linearly
chirped Gaussian input pulse.

In Fig. 1, an optical signal is passed through an optical band-
pass filter at the “edge.” The amplitude response (in dB) of
the optical filter can be expressed using Taylor series of

, where is the center
frequency of the input optical signal, which is usually not equal
to the center frequency of the optical fiber , and are
the Taylor series coefficients in dB of optical power. Without
loss of generality, assume that dB. The response of the
optical filter in linear unit of electric field is

(1)
where and is the disper-
sion of the optical fiber. The linear phase, usually expressed by
the coefficient of , is ignored because it just induces a con-
stant time delay.

Assuming that the electric field entering into the optical
filter is and the output electric field is
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, the spectrum of the output electric
amplitude is

(2)

where and are the Fourier transform of and
, respectively. For various input waveform, can be

evaluated by either numerical or analytical form. The output
can be found by passing though the transfer

function of . The output pulse shape can be calculated
by taking the inverse Fourier transform of . For most
pulse shapes, neither nor the inverse of can be
evaluated analytically.

Lengthily, numerical simulation [8], [9] is necessary for an
accurate estimation of the system penalty generated from op-
tical filtering. Numerical simulation usually provides accurate
results, but without insight of the problem. As a simple example
with viable analytical results, the input optical pulse can be as-
sumed a normalized linearly chirped Gaussian pulse of

(3)

where and are the chirp parameter and the pulsewidth,
respectively, of the input pulse. Linearly chirped pulse is as-
sumed here to model the output pulses from external modula-
tors with nonzero chirp parameter [10], [11]. Considering up to
the second-order Taylor series coefficients, after some algebra,
the output spectrum is

(4)

Taking the inverse Fourier transform, the output electric field is

(5)

The output pulse shape in optical power is .
After some algebra

(6)

where

(7a)

(7b)

(7c)

From (6), the output pulse is still a Gaussian pulse. The
-width of the input pulse is and that of the output

Gaussian pulse becomes

(8)

From (5) of output optical pulse, the term of induces an
“imaginary” time shift, corresponding to the “real” time shift
provided by . While there is nothing corresponding to “imag-
inary” time shift in physics, for most pulses, just gives a con-
stant gain or loss of the optical pulse. For example, if

, nonzero provides a uniform gain of .
For , the formulas of (6)–(8) are identical to those of

[12] and [13] for pulse broadening due to fiber dispersion. With
, the output pulse may be narrowed or broadened,

according to

(9)

For zero-chirp pulse ( ), an optical filter could provide
either pulse narrowing or broadening, depending on the sign
of or the curvature of the filter. When approaches ,
high-order terms of , , contribute to the signal and
limit the pulsewidth. However, this paper will not consider those
high-order terms in details. For linearly chirped pulse with
, the -width of output pulse is

(10)

For positive , the pulsewidth is always larger than that without
chirp. It is still possible to archive pulse compression for
, with the shortest pulse width of

(11)

when . For , the output
pulse is always broadened.

For equal to zero, the peak power of the pulse is .
With nonzero , the peak power of the pulse is , where

is the center of the output Gaussian pulse. It is
important to find the power penalty attributed to filter generated
distortion. The eye-diagram penalty is approximately equal to

(12)

where is the bit-interval and is the data rate,
is the intersymbol interference to signal ratio, and

is also the ratio of pulse power. In the above expres-
sion, we neglect the intersymbol interference from ,

, etc. After some algebra

(13)

which is independent of . For systems without signal depen-
dent noise, the power penalty is also equal to the eye-diagram
penalty. Usually, the power penalty is expressed in dB scale,
given by .

The power penalty defined by (13) neglects the effect of
receiver filter and the noise bandwidth of the receiver. If a
Gaussian shape receiver filter with -bandwidth of
is used, the parameter of in (13) should be replaced by
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. In the later part of this paper, the effects of
receiver filter are ignored.

III. N UMERICAL RESULTS

Fig. 2 shows the power penalty of (13) and of (10)
as a function of , where is proportional to in (1)
and calculated by , with in dB
scale of optical power. Usually, except fiber Bragg grating based
filters, of an optical filter is very small [4] and is as-
sumed in Fig. 2. Having , both the output pulsewidth
and the power penalty depends only on, which is indepen-
dent of the sign of the chirp parameter. In Fig. 2, the-width
of the input pulse is , corresponding to a full-width
half-maximum (FWHM) pulsewidth of . The chirp pa-
rameter of the input pulse is and . The value of

is approximately equal to the chirp parameter of an
external modulator [11].

From Fig. 2, both the pulsewidth and the power penalty in-
crease when becomes more negative. A negative
is usually for the case of a bandpass filter. As the curvature of
the bandpass filter increases, it induces larger waveform distor-
tion to the optical signal, broadens the pulse, provides higher
intersymbol interference, and thus a higher power penalty. As
implied by (9), both pulsewidth and the power penalty decreases
for a positive for a zero-chirp optical pulse. A positive

, usually for the case of a band-rejection filter, may com-
press the optical pulse and decrease the power penalty for zero-
chirp pulse. However, with a chirp parameter of ,
a positive broadens the optical pulse and induces very
high power penalty for dB. An optimal positive

exists that achieves the shortest pulsewidth of (11) and
provides pulse narrowing. The power penalty decreases with the
increase of the chirp parameter for bandpass filter having nega-
tive . The power penalty increases with the increase for
chirp parameter for band-rejection filter having positive .

Fiber–Bragg grating has dispersion around the center region
[4]. Fig. 3 shows the power penalty and pulsewidth as a func-
tion of for . In general, the power penalty
increases with the increase of chirp parameter from negative to
positive, especially in the positive region. In the case of
bandpass filter having negative , as both parameters of

and in (7) depend on , , and with a complex re-
lationship, the power penalty increases as the chirp parameter
changing from negative to positive. However, after the chirp pa-
rameter larger than a certain value, the power penalty decreases
again. The power penalty for the case of is the
same as that in Fig. 3 with the curves of positive and negative
chirp exchanged.

A WDM system may pass through many fiber spans and
optical filters. The overall fiber and filter dispersion can be
equalized using dispersion compensation units, i.e., to make
the overall approaching zero. In the operating region of the
optical filter, the overall distortion coefficient must be in the
region of for less than 3-dB power
penalty as from Fig. 2, where is the total number of optical

Fig. 2. (a) Power penalty and (b) pulsewidth as a function of normalized
filter-distortion coefficientA =T for nondispersive filter with� = 0.

filters and the positive side is not the case for bandpass filter.
For a 10-Gb/s system, the requirement becomes

dB/(GHz) (14)

In other words, the filter cannot change from flat region with
0 dB/GHz to nonflat region with 0.025 dB/GHz within a fre-
quency separation of 1 GHz, and so on. Given the maximum
number of optical filters that the system may pass through, the
operating region of the optical filter must conform to the crite-
rion of (14) for a small filter curvature. From Fig. 3, the require-
ment of (14) will be tightened if some portions of fiber or filter
dispersion are unequalized.

IV. CONCLUSION

This paper provides a model of waveform distortion due to
optical filtering. Linearly chirped Gaussian pulse is assumed
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Fig. 3. (a) Power penalty and (b) pulsewidth as a function of normalized
filter-distortion coefficientA =T for dispersive filter having� =T = 0:1.

to provide some insight of the problem. It is found that the
first-order filter distortion, linear slope in dB scale, provides no
distortion to Gaussian pulse. The output pulse is still a Gaussian
pulse with the second-order distortion. Optical filtering can
provide both pulse narrowing and broadening, depending on the
values of filter parameters, pulsewidth, and chirp parameter of
input pulse. Although a positive second-order filter coefficient
of is usually providing narrower pulse shape or smaller
power penalty, a bandpass filter normally has a negative filter
coefficient of . In addition to designing a filter with linear
phase, this paper suggests a new design criterion (14) for the
second-order filter coefficient in the operating region of the
optical filter.
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